Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Published by
The International Institute of Informatics and Cybernetics


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


Utilization of Artificial Intelligence by Students in Interdisciplinary Field of Biomedical Engineering
Shigehiro Hashimoto
(pages: 1-5)

Transdisciplinary Applications of Data Visualization and Data Mining Techniques as Represented for Human Diseases
Richard S. Segall
(pages: 6-15)

Beyond Status Quo: Why is Transdisciplinary Communication Instrumental in Innovation?
James Lipuma, Cristo Leon
(pages: 16-20)

How We Can Locate Validatable Foundations of Life Themes
Jeremy Horne
(pages: 21-32)

Bringing Discipline into Transdisciplinary Communications -The ISO 56000 Family of Innovation Standards-
Rick Fernandez, William Swart
(pages: 33-39)

To AI Is Human: How AI Tools with Their Imperfections Enhance Learning
Martin Cwiakala
(pages: 40-46)

Knowledge, Learning and Transdisciplinary Communication in the Evolution of the Contemporary World
Rita Micarelli, Giorgio Pizziolo
(pages: 47-52)

Human Complexity vs. Machine Linearity: Tug-of-War Between Two Realities Coexisting in Precarious Balance
Paolo Barile, Clara Bassano, Paolo Piciocchi
(pages: 53-62)

A Cybernetic Metric Approach to Course Preparation
Russell Jay Hendel
(pages: 63-70)

The Impact of Artificial Intelligence on Education
John Jenq
(pages: 71-76)

Bridging the Gap: Harnessing the Power of Machine Learning and Big Data for Media Research
Li-jing Arthur Chang
(pages: 77-84)

Image Processing, Computer Vision, Data Visualization, and Data Mining for Transdisciplinary Visual Communication: What Are the Differences and Which Should or Could You Use?
Richard S. Segall
(pages: 85-92)

Identification – The Essence of Education
Jeremy Horne
(pages: 93-99)

The Greek-Roman Theatre in the Mediterranean Area
Maria Rosaria D’acierno Canonici Cammino
(pages: 100-108)

Examination of AI and Conventional Teaching Approaches in Cultivating Critical Thinking Skills in High School Students
Luis Castillo
(pages: 109-112)

Thoughts, Labyrinths, and Torii
Maurício Vieira Kritz
(pages: 113-119)

Can Two Human Intelligences (HIs or Noes) and Two Artificial Intelligences (AIs) Get Involved in Interlinguistic Communication? – A Transdisciplinary Quest
Ekaterini Nikolarea
(pages: 120-128)


 

Abstracts

 


ABSTRACT


Network Intrusion Detection System – A Novel Approach

Krish Pillai


Network intrusion starts off with a series of unsuccessful breakin attempts and results eventually with the permanent or transient failure of an authentication or authorization system. Due to the current complexity of authentication systems, clandestine attempts at intrusion generally take considerable time before the system gets compromised or damaging change is affected to the system giving administrators a window of opportunity to proactively detect and prevent intrusion. Therefore maintaining a high level of sensitivity to abnormal access patterns is a very effective way of preventing possible break-ins. Under normal circumstances, gross errors on the part of the user can cause authentication and authorization failures on all systems. A normal distribution of failed attempts should be tolerated while abnormal attempts should be recognized as such and flagged. But one cannot manage what one cannot measure. This paper proposes a method that can efficiently quantify the behaviour of users on a network so that transient changes in usage can be detected, categorized based on severity, and closely investigated for possible intrusion. The author proposes the identification of patterns in protocol usage within a network to categorize it for surveillance. Statistical anomaly detection, under which category this approach falls, generally uses simple statistical tests such as mean and standard deviation to detect behavioural changes. The author proposes a novel approach using spectral density as opposed to using time domain data, allowing a clear separation or access patterns based on periodicity. Once a spectral profile has been identified for network, deviations from this profile can be used as an indication of a destabilized or compromised network. Spectral analysis of access patterns is done using the Fast Fourier Transform (FFT), which can be computed in T(N log N) operations. The paper justifies the use of this approach and presents preliminary results of studies the author has conducted on a restricted campus network. The paper also discusses how profile deviations of the network can be used to trigger a more exhaustive diagnostic setup that can be a very effective first-line of defense for any network.

Full Text