Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.
Information overload of the anesthesiologist through technological advances have threatened the safety of patients under anesthesia in the operating room (OR). Traditional monitoring and alarm systems provide independent, spatially distributed indices of patient physiological state. This creates the potential to distract caregivers from direct patient care tasks. To address this situation, a novel reactive agent decision support system with graphical human machine interface was developed.
The system integrates the disparate data sources available in the operating room, passes the data though a decision matrix comprising a deterministic physiologic rule base established through medical research. Patient care is improved by effecting change to the care environment by displaying risk factors and alerts as an intuitive color coded animation. The system presents a unified, contextually appropriate snapshot of the patient state including current and potential risk factors, and alerts of critical patient events to the operating room team without requiring any user intervention. To validate the efficacy of the system, a retrospective analysis focusing on the hypotension rules were performed. Results show that even with vigilant and highly trained clinicians, deviations from ideal patient care exist and it is here that the proposed system may allow more standardized and improved patient care and potentially outcomes.