Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.
An acoustic image of space is an acoustically described visual image intended to help blind people orient themselves in space. Description is made with the aid of spatial sounds created using HRTF filters. HRTF filters are empirically acquired FIR filter sets that describe changes to the sound as it travels from its source towards the human eardrum. They include changes related to body shape, ears, ear canal, etc. Our research focused on finding the maximum resolution of the human auditory system when determining the location of a sound source in space. This is also the maximum resolution for creating an acoustic image. We were interested in minimum azimuth and elevation change resolution – we tried to establish the minimum angle between two sources that could still be detected. Resolution dependence on signal bandwidth was also measured. The results were encouraging, especially in the horizontal plane, where most of subjects were able to tell the difference between two sources only 5° apart. Edge resolution, with 80° – 90° azimuth, was still satisfactory if a wide bandwidth signal was used. If elevation is increased, the resolution deteriorates quickly and is no longer satisfactory. To address this problem, different coding should be used to create an acoustic image of elevation.