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ABSTRACT 

 

Explainable Decision Support Systems (XDSS) have emerged as 

a critical tool for integrating artificial intelligence (AI) into 

decision-making processes, combining predictive accuracy with 

interpretability to foster user trust and accountability. Despite 

their increasing adoption across various domains, XDSS face 

significant computational challenges, including data complexity, 

scalability, real-time processing demands, and ensuring fairness 

and robustness. These challenges are further compounded by the 

unique requirements and constraints of different application 

areas, which directly influence system performance and utility, 

making the strategic selection of application areas a crucial step 

in optimizing XDSS performance. Therefore, this paper employs 

an adaptation of Multi-Criteria Decision Analysis (MCDA) to 

systematically evaluate and rank potential application areas 

based on domain-specific factors such as data characteristics, 

explanation requirements, and computational constraints. 

Through a detailed analysis of challenges and application 

contexts, this paper underscores the importance of domain 

selection in maximizing the practical utility and computational 

efficiency of XDSS. The findings emphasize that selecting the 

right application area is foundational to ensuring XDSS 

efficiency and highlight how the MCDA framework can be 

extended to support further configuration decisions within 

selected domains. This paper contributes to the strategic planning 

and development of future XDSS frameworks, offering guidance 

for developers and business leaders aiming to implement these 

systems more effectively. 
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Explainable Decision Support Systems (XDSS) are at the 

forefront of integrating artificial intelligence (AI) with user-

centric explanations that is enabled by explainable artificial 

intelligence (XAI), providing clarity and justification for 

automated decisions [1]. In domains ranging from healthcare and 

finance to urban planning and emergency management, XDSS 

helps stakeholders make informed decisions by providing 

transparent insights into the complex algorithms that underpin 

these systems.  In healthcare to be specific, XDSS can enhance 

accountability and trust in AI systems [2], while in biomedicine, 

they can make AI decisions trustworthy for physicians and 

patients [3].  However, one of the persistent challenges in the 

deployment of XDSS is managing the inherent computational 

complexity that comes with processing large, diverse datasets 

and executing complex algorithms. 

 

As the complexity of datasets and decision-making processes 

increases, so does the computational load on XDSS [4]. This can 

lead to slower response times and decreased efficiency, 

ultimately affecting the system's performance and user 

satisfaction. Optimizing computational complexity within XDSS 

is therefore essential, not only to enhance system performance 

but also to maintain and improve the quality of decision-making 

[5]. As XDSS are deployed in environments requiring real-time 

or near-real-time analytics, such as emergency rooms and 

financial trading floors, the systems must operate with high 

efficiency. This need for speed and accuracy places substantial 

computational demands on the systems, necessitating robust data 

management, processing capabilities, and scalable solutions. 

 

Despite the increasing adoption of Explainable Decision Support 

Systems (XDSS) across various domains, there remains a 

significant gap in understanding how the choice of application 

area impacts the optimization of computational complexity.  
Addressing this gap requires a comprehensive representation of 

the application domain and careful consideration of  how 

different requirements and factors fit together [6]. Current 

research primarily focuses on improving individual aspects of 

XDSS, such as explainability and algorithmic efficiency, but 

often overlooks the holistic influence of application context on 

these improvements. This gap is critical because the demands on 

computational resources and the necessity for transparent 

decision-making vary greatly across different sectors, leading to 

inconsistent performance and suboptimal utilization of XDSS 

capabilities. 

 

Therefore, the focus of this paper is on the strategic selection of 

application areas as a means to maximize the benefits of 

computational optimization in XDSS using Multi-Criteria 
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Decision Analysis (MCDA) to systematically evaluate and select 

application areas that present the greatest opportunity for 

computational optimizations in XDSS. The choice of application 

area significantly influences the design and functionality of 

XDSS, dictating the types of data processed, the complexity of 

the decision-making required, and the specific needs for 

explainability.  

 

Following that the paper will provide a comprehensive 

understanding of how strategic choices in application area 

selection can guide the optimization of computational efficiency 

and enhance the overall utility of Explainable Decision Support 

Systems, the contributions of the paper are as follows: 

1) introduces a systematic framework using Multi-Criteria 

Decision Analysis (MCDA) for selecting application areas 

where computational optimizations can be most effective. 

This framework guides in identifying areas that benefit 

significantly from computational efficiency improvements. 

2) Establishes a set of criteria for selecting application areas 

for XDSS based on computational complexity, relevance, 

and impact on decision-making. 

3) Provides a detailed comparative analysis of application 

areas like healthcare, finance, and retail, identifying where 

computational optimizations in XDSS can be most 

effective. 

 

The remainder of the paper is organized as follows: Section 2 

explores the background and context of XDSS, discussing its 

core components, common computational challenges, and the 

influence of different application areas on its functionality. 

Section 3 establishes the criteria for selecting application areas 

and reviews potential sectors where XDSS could be particularly 

impactful. The review of the potential application area is 

presented in section 4 while in section 5 through case studies and 

comparative analyses, the article will demonstrate successful 

implementations and draw lessons on strategic application area 

selection. Finally, it will discuss the broader strategic 

implications for both developers and business leaders, address 

potential challenges and ethical considerations, and suggest 

future research directions to continue advancing the field. 

 

 

 

XDSS have emerged as a transformative technology, enabling 

informed decision-making by combining the predictive power of 

advanced AI models with interpretability that enhances user trust 

and accountability. This section provides a foundational 

understanding of XDSS, outlines the computational challenges 

they face, and emphasizes the critical importance of strategically 

selecting the right application domain to optimize their 

performance and utility. 

 

Overview of XDSS 

XDSS represent a sophisticated integration of advanced 

computational models with interactive decision-support 

interfaces. These systems are designed to aid human decision-

makers by providing actionable insights derived from complex 

data analyses while ensuring transparency in the decision-

making process. The core components of an XDSS as depicted 

by the XAI concept diagram in Figure 1. [7] typically include and 

synthesized as follows: 

 

Data Processing Module: This component handles 

the ingestion, cleaning, and transformation of large datasets to 

prepare them for analysis. It ensures that data from various 

sources is normalized and pre-processed to a consistent format 

suitable for the analytical engine.  

 

Analytical Engine: This module implements machine 

learning algorithms or statistical models to analyze the processed 

data and generate predictions or recommendations. It forms the 

computational core of XDSS, transforming raw data into 

meaningful insights. 

 

Explanation Framework: A crucial component that 

generates interpretable outputs explaining the reasoning behind 

the system’s decisions to the end-users. This ensures 

transparency and helps build trust in the system by providing 

justifications for the decisions made. 

 

User Interface: This component provides a platform 

for users to interact with the system, input data, and receive 

explanations in an understandable format. It bridges the gap 

between complex computational processes and the end-users, 

facilitating easy access and interpretation of the insights 

generated. 

 

 

Computational Challenges in XDSS 

The implementation of XDSS encounters a range of 

computational challenges that impact performance, scalability, 

and usability. These challenges are influenced not only by the 

inherent complexity of integrating explainable artificial 

intelligence (XAI) into decision-making workflows while 

maintaining efficiency and interpretability but also by the 

2.  BACKGROUND AND CONTEXT 

Figure 1: Overview of XAI Concept 
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specific requirements of the application domain. Strategic 

selection of application domains plays a critical role in managing 

these challenges effectively, as different domains offer unique 

opportunities for optimizing computational complexity. The 

following thematically outlines the key challenges in XDSS and 

highlights how domain-specific considerations shape them. 

 

Algorithmic Efficiency and Complexity: The 

complexity of algorithms used in XDSS significantly affects their 

computational performance. Generating explanations often 

requires resource-intensive processes, such as sampling, 

perturbation, or surrogate modeling (e.g., LIME, SHAP). High-

dimensional datasets and intricate models further increase 

computational demands, highlighting the need for efficient 

algorithms that strike a balance between accuracy and 

interpretability. Poorly optimized algorithms can lead to 

excessive latency, especially in real-time applications. 

 

Data Volume and High Dimensionality. The vast 

amounts of data that XDSS needs to process can lead to 

significant computational demands, requiring robust data 

management and processing capabilities. traditional XAI 

techniques often struggle with high-dimensional data due to 

computational constraints and cognitive burden of interpreting 

complex explanations [8], [9]. Ribeiro (2021) highlights the 

impact of dataset complexity on model explainability, suggesting 

that more complex datasets may require more sophisticated XAI 

techniques [10]. This is in line with the broader understanding of 

computational complexity, which considers the inherent 

difficulty of problems and the efficiency of algorithms in solving 

them 

 

Real-Time Constraints. Real-time constraints in 

Explainable AI (XAI) pose significant challenges for AI systems, 

particularly in safety-critical applications [11]. The need for real-

time or near-real-time analytics in environments like emergency 

rooms or financial trading floors pressures XDSS to provide 

explanations within stringent timeframes, to operate with high 

efficiency and minimal latency. Generating accurate and 

interpretable explanations under time constraints requires 

efficient algorithms and optimized workflows to balance speed 

and reliability. Additionally, interpretability techniques like 

SHAP and LIME, while providing valuable insights, are 

computationally intensive and may not be practical for real-time 

applications or large datasets [6]. This requirement underscores 

the importance of optimizing computational complexity to 

ensure that XDSS can deliver timely and actionable insights 

without delays. 

 
Complexity of Models. The complexity of predictive 

or prescriptive models used in XDSS can make them 

computationally expensive, particularly when they involve deep 

learning or other advanced AI techniques. The application of 

XAI in addressing these complex problems is an ongoing 

challenge, with the need for more efficient algorithms and 

techniques  [12]. A key challenge is balancing model complexity 

and interpretability, as simplifying highly accurate models like 

DNNs for better explainability can reduce accuracy, which is 

unacceptable in critical applications. Efforts must focus on 

methods that preserve performance while ensuring sufficient 

explanations [13].  

 

Scalability. As XDSS applications grow in any aspect, 

the systems must scale without a loss in performance. Scaling 

XDSS to accommodate larger datasets, more users, more 

complex decision scenarios or additional functionalities 

introduces challenges related to computational resource 

management. Ensuring explanation accuracy and responsiveness 

under increased workload necessitates advanced optimization 

techniques, which in turn introduce their own complexities. 

Formal explainability approaches, which offer rigorous 

guarantees but face scalability challenges, particularly for neural 

networks [14]. Ensuring that XDSS can handle increased loads 

while maintaining efficiency and accuracy is crucial for their 

success. There may be a need to weigh the cost of explainability 

methods, consider alternative or approximate solutions, and 

potentially invest in more powerful computational resources or 

optimize the methods for better scalability [6]. 

 

Interpretability and Explainability Needs.  Different 

applications have varying requirements for interpretability and 

explainability, complicating the development of generalized 

solutions [15]. Interpretability is often judged according to the 

specific requirements of the application area. For example, the 

interpretability needs in healthcare for diagnosing patients are 

different from those in industrial anomaly detection. This 

variability necessitates the development of standardized 

interpretability metrics that can quantitatively assess this 

characteristic across different contexts. A key idea in 

interpretability research is that the main reason for an ML- or CI-

based system to require interpretability is some form of 

incompleteness in the problem formulation. This may include 

limited understanding of the problem or a mismatch between 

modeling objectives and application goals. Recognizing these 

diverse needs highlights the importance of selecting application 

areas that can benefit most from computational optimizations 

while ensuring that the models remain interpretable and 

explainable.  

 

Trade-Off Between Fidelity and Simplicity: 

Explanations must balance fidelity (accurately reflecting model 

behavior) and simplicity (being understandable to users). High-

fidelity explanations often demand greater computational 

resources, while overly simplified explanations risk omitting key 

insights. The interplay between complexity, fidelity, and 

coverage in surrogate explanations is crucial for effective XAI 

[16]. Achieving this balance is a central challenge in XDSS 

development. 

 

Robustness and Fairness: Recent research has 

highlighted the interconnected nature of fairness, robustness, and 

explainability in AI systems [17], [18], [19]. Ensuring 

explanations remain robust in adversarial scenarios or under 

noisy data conditions is a complex challenge, particularly in 

domains like cybersecurity or finance, where adversarial 

behavior is common. Additionally, fairness requirements in 

domains such as healthcare and employment demand 

computationally intensive checks. Choosing domains with lower 

adversarial risks or simplified fairness requirements can reduce 

these burdens. 

 

User-Centric Customization: Studies emphasize the 

need to consider different stakeholder groups and their unique 

interpretability requirements [15], [20].  Different application 

domains involve diverse user groups, each with unique 

interpretability needs. For example, healthcare professionals may 

require detailed, domain-specific explanations, whereas retail 

consumers may benefit from simpler, generalized insights. 

Tailoring explanations to user needs increases computational 
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complexity, but strategically selecting domains with 

homogeneous user bases can streamline customization efforts. 

  

Explanation Delivery Formats: The computational 

complexity of delivering explanations in interpretable formats, 

such as natural language, decision rules, or visualizations, 

depends on domain requirements. Researchers have classified 

XAI methods based on their output formats, such as feature 

attribute, instance, and decision rules/trees [21], [22]. For 

instance, domains like education or legal analysis may demand 

detailed textual or graphical explanations, while others, like 

autonomous systems, may rely on simpler formats. Selecting 

domains with less demanding explanation delivery requirements 

can optimize computational efficiency. 

 

These challenges highlight the necessity for continuous 

advancements in computational optimization techniques to 

improve the performance and scalability of XDSS. The strategic 

selection of application areas is crucial for optimizing 

computational complexity in XDSS.  

 

Importance of Choosing the Right Application Area for 

Optimizing Computational Complexity 

The computational complexity of XDSS is closely tied to the 

characteristics of the application domain in which they are 

deployed. Different domains pose varying levels of challenges 

based on the nature of data, explanation requirements, and time 

sensitivity. Selecting the right application domain strategically 

can help optimize computational complexity while maximizing 

the system's utility and impact.  

 

In a real-world application context, interpretability might be 

judged according only to the specific requirements of the 

application area. For example, the requirements for diagnosis in 

oncology and for anomaly detection in industrial production have 

little in common [23]. This acknowledgment that different 

application areas have unique interpretability and explainability 

needs is crucial. Different sectors face varied challenges and 

priorities when it comes to decision support systems. For 

instance, healthcare applications prioritize the accuracy and 

explainability of diagnostic models, while industrial applications 

may focus more on the detection of anomalies in production 

processes and the efficiency of these detections. 

 

Selecting the right application area is not just about addressing 

computational complexity; it also involves aligning with the 

specific demands and priorities of that sector. This strategic 

selection ensures that the XDSS can deliver meaningful, context-

appropriate insights that are both computationally efficient and 

interpretable by the end-users. By focusing on an application area 

with clearly defined priorities and challenges, the design and 

implementation of XDSS can be strategically optimized. This 

approach not only reduces computational complexity but also 

enhances the system's ability to provide meaningful and user-

relevant insights in real-world scenarios. 

 

 

This study employs the Multi-Criteria Decision Analysis 

(MCDA) framework adapted to strategically select application 

areas for optimizing computational complexity in XDSS. MCDA 

is predominantly used in healthcare decision making.  It provides 

a robust framework for decision-making by allowing the 

assessment of multiple criteria that affect a particular choice [24]. 

Therefore, it is adapted to ensure that the selected application 

areas are best suited to leverage the benefits of computational 

optimizations while addressing the specific needs and challenges 

inherent to each sector. 

 

This adaptation of the MCDA framework provides a systematic 

and quantifiable method for selecting the most appropriate 

application area for deploying XDSS, ensuring that the decision 

is grounded in thorough analysis and strategic alignment and is 

provided as follows in Figure 2. 

 

The methodology for selecting application areas in Explainable 

Decision Support Systems (XDSS) using Multi-Criteria Decision 

Analysis (MCDA) follows a structured, step-by-step approach to 

ensure a robust and transparent evaluation: 

Step 1 - Defining the Decision Problem: The first 

step clearly identifies the decision problem, focusing on selecting 

application areas where computational complexity optimization 

is critical. This step ensures that the scope of the analysis aligns 

with the goals of enhancing XDSS efficiency while maintaining 

explainability. 

 

Step 2 - Identifying and Structuring Criteria: 

Relevant criteria are identified through comprehensive literature 

reviews and domain analysis, ensuring that they are specific, 

measurable, and aligned with the objectives.  

 

Step 3 - Measuring Performance of Alternatives: A 

three-point Likert scale was developed to assess the quality of 

each criterion, representing high, medium, and low performance 

levels. 

 

Step 4 - Scoring Alternatives: Alternatives in the 

context of the study, application areas are scored based on their 

performance against the identified criteria. Standardized scoring 

methods are employed to ensure consistency, and validation is 

conducted to minimize errors and ensure reliability. 

 

Step 5 - Weighting Criteria: Criteria are weighted to 

reflect their relative importance using techniques like the 

Analytic Hierarchy Process (AHP). This ensures alignment with 

 

Areas in XDSS 

3.  METHODOLOGY 

Figure 2: Adapted MCDA Framework for Selecting Application 
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stakeholder priorities and strategic objectives, making the 

evaluation process transparent and objective. 

 

Step 6 - Aggregating Scores: Aggregated scores are 

calculated by combining the performance scores and weights 

using appropriate aggregation functions (e.g., weighted sums). 

The results are validated to ensure robustness and consistency in 

the ranking of application areas. 

 

Step 7 - Sensitivity Analysis: Potential uncertainties 

in the decision-making process are addressed through sensitivity 

analysis methods, such as Monte Carlo simulations or weight 

adjustments. This step evaluates how variations in criteria 

weights or performance scores impact the final rankings, 

ensuring the robustness of the results. 

 

Step 8 - Reporting Findings and Recommendations: 

Finally, the results are synthesized and reported, providing key 

insights and actionable recommendations for XDSS deployment. 

This includes highlighting the strengths and limitations of the 

MCDA approach, as well as discussing the practical implications 

for optimizing computational complexity in the selected 

application areas. 

 

 

Explainable Decision Support Systems (XDSS) have the 

potential to significantly enhance decision-making processes 

across various domains. To provide a meaningful context for this 

section, this study builds upon existing research that previously 

presented various application areas through case studies on 

Healthcare, finance and business domains respectively [5]. To 

provide a broader perspective, additional application areas 

identified in other studies have been synthesized and included 

[13], [25]. The section aligned with Step 1 of the MCDA process 

which is to define the decision problem and specifically identify 

potential application areas where computational complexity 

optimization is both critical and feasible. This ensures that the 

findings remain applicable to similar contexts across other 

domains, laying a solid foundation for the systematic evaluation 

that follows. 

 

Healthcare 

In healthcare, XDSS can manage vast amounts of patient data, 

including medical histories, diagnostic images, and treatment 

plans, ensuring accurate and timely access to patient information. 

XAI techniques are being applied to various healthcare domains, 

including patient monitoring systems [26], pharmacovigilance 

[27], and clinical prediction models [28]. This is crucial for 

improving the quality of care and enabling personalized 

treatment. Additionally, XDSS can assist in diagnosing diseases 

and planning treatment by analyzing patient data and medical 

research [29], thus enhancing diagnostic accuracy and suggesting 

evidence-based treatment options, reducing the risk of human 

error. In emergency rooms and triage assessments, XDSS can 

provide real-time data analysis and decision support, which is 

critical for effective and timely emergency response, ensuring 

that patients receive the appropriate level of care promptly [30] 

[31].  

 

Finance 

XDSS span various financial applications, including credit 

management, stock predictions, and anomaly detection [32]. 

Explainability plays a vital role in the finance sector, 

significantly enhancing risk assessment, fraud detection, and 
customer service [33]. XDSS can enhance risk assessment by 

analyzing financial data to manage risks in investments, loans, 

and other financial activities [34], [35]. This improves decision-

making accuracy and reduces financial losses. XDSS is also 

pivotal in fraud detection, where it identifies fraudulent activities 

by analyzing transaction data and identifying anomalies, thus 

protecting financial institutions and customers. Additionally, 

XDSS helps manage and analyze customer data to improve 

service and develop personalized financial products, enhancing 

customer satisfaction and loyalty. 

 

Business 

Explainable Decision Support Systems (XDSS) can significantly 

enhance various business operations including strategic 

planning, supply chain management, and customer relationship 

management. In strategic planning, XDSS analyzes market 

trends, competitive landscapes, and internal performance 

metrics, aiding businesses in making informed strategic decisions 

aligned with their long-term goals. However, integrating diverse 

data sources and providing actionable insights for business 

leaders can be challenging. In supply chain optimization, XDSS 

analyzes data on suppliers, inventory levels, and logistics, 

enhancing operational efficiency, reducing costs, and improving 

supply chain resilience [36]. Managing complex supply chain 

data and delivering actionable insights are primary challenges. 

For Customer Relationship Management (CRM), XDSS 

analyzes customer interactions and feedback, improving 

customer satisfaction and loyalty through personalized 

experiences. Ensuring data privacy and providing easily 

understandable insights for CRM professionals are significant 

challenges. 

 

Transport 

In the transport sector, XDSS can enhance route optimization, 

traffic management, and logistics operations. Studies have 

investigated XAI methods for understanding user experience in 

sustainable transport [37], improving conflict resolution in air 

traffic management [38], and enhancing mobile traffic 

classification [39]. XAI has been applied to analyze risk factors 

in road accidents [40] and interpret traffic flow forecasting 

models [41]. In the context of intelligent connected vehicles, XAI 

has been explored for intrusion detection and mitigation [42], as 

well as for traffic detection in autonomous systems [43]. 

Additionally, XAI techniques have been employed to explain 

flight take-off time delay predictions to air traffic controllers 

[44]. These systems can analyze real-time traffic data to 

minimize delays, optimize delivery routes, and allocate resources 

efficiently.  

 

Manufacturing and Industry 

In manufacturing and industrial settings, XDSS can optimize 

production processes, improve operational efficiency from 

product design to quality control and predictive maintenance 

[45]. These systems can analyze sensor data from machinery, 

monitor production lines, and predict equipment failures, 

enabling proactive maintenance and reducing downtime [46]. By 

leveraging real-time data, XDSS can identify inefficiencies, 

optimize resource allocation, and streamline supply chain 

management. Additionally, they can assist in product design and 

testing by analyzing performance metrics and simulating 

scenarios to improve outcomes [47]. In quality assurance, XDSS 

can detect anomalies in production, ensuring that products meet 

required standards [48]. For example, in industries like 

automotive or electronics, XDSS can identify defects early in the 

4.  POTENTIAL APPLICATION AREAS 
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production cycle, minimizing waste and improving overall 

product reliability. 

 

Education 

In education, XDSS can support personalized learning by 

analyzing student performance data and adapting teaching 

methods accordingly [49]. These systems can help educators 

identify learning gaps, recommend tailored interventions, and 

optimize curricula based on analytics. Additionally, XDSS can 

assist administrators in resource allocation and policy planning.  

 

 

 

The selection of criteria begins with a thorough understanding of 

the functional requirements and computational challenges 

inherent in XDSS and it is aligning with Step 2 of MCDA which 

is selecting and structuring criteria. Usually, these criteria are 

derived from a combination of technical needs, stakeholder 

expectations, and the strategic objectives of the systems. For 

choosing an appropriate application domain for XDSS involves 

evaluating several key factors to ensure optimal performance, 

usability, and compliance with broader requirements. The 

following considerations are essential in guiding domain-neutral 

decision-making for deploying XDSS: 

 

Data Characteristics  

The data within the application domain plays a critical role in 

shaping the design and implementation of XDSS. Data 

explainability, an essential concept, ensures that the datasets used 

to train AI models are comprehensible, reliable, and of high 

quality [50]. This is particularly relevant as the behavior and 

performance of XDSS are heavily influenced by the 

characteristics of the input data. Data characteristics such as 

volume, velocity, variety, veracity, and validity play a critical 

role in shaping the design and reliability of AI-based decision-

making algorithms [51]. These factors are essential 

considerations for data-driven decision-making, as they directly 

impact the quality, performance, and trustworthiness of AI 

systems in handling complex data [52]. High-volume datasets 

demand robust processing and storage capabilities, while data 

structure, whether structured, semi-structured, or unstructured 

affects the complexity of integration and analysis. Complex 

datasets with high dimensionality or heterogeneity require 

advanced computational techniques to ensure efficient 

processing and meaningful explanations. High-dimensional or 

heterogeneous datasets add to computational challenges, 

emphasizing the importance of selecting domains where XDSS 

can effectively handle data complexities without compromising 

performance. 

 

Explanation Requirements (Fidelity vs. Simplicity)  

The need for interpretability varies significantly across 

applications [53], creating a trade-off between fidelity and 

simplicity [16]. High-fidelity explanations provide detailed 

insights into model behavior but often come with increased 

computational demands. Conversely, simpler explanations 

prioritize accessibility and ease of understanding, potentially 

sacrificing some level of detail. When selecting a domain, it is 

essential to balance these requirements in a way that matches user 

expectations and system objectives while maintaining 

computational efficiency. 

 

 

 

Real-Time Processing Needs 

Timeliness is a critical consideration in many decision-support 

contexts [54]. Domains with real-time or near-real-time 

requirements necessitate XDSS implementations capable of 

delivering low-latency responses. Achieving this requires 

optimized workflows, lightweight algorithms, and scalable 

infrastructure. In contrast, domains with less stringent time 

constraints may allow for more computationally intensive 

approaches that prioritize depth and accuracy over speed. 

Ensuring that XDSS can meet the real-time demands of a domain 

is critical for its functionality and impact. 

 

Scalability Demands 

Scalability addresses the ability of XDSS to adapt to increasing 

data volumes, user bases, or operational demands over time [9]. 

Whether processing high transaction volumes, accommodating 

diverse user groups, or analyzing complex datasets, scalability 

ensures that the system can expand without degrading 

performance. When evaluating potential domains, it is important 

to consider how scalability requirements impact computational 

infrastructure and whether the XDSS can support anticipated 

growth efficiently 

 

Ethical and Regulatory Constraints 

Ethical and regulatory considerations are pivotal in ensuring that 

XDSS deployments adhere to societal norms and legal 

frameworks such as the EU's GDPR, HIPAA and NYC's ADS 

Law, aim to protect individual rights in data-driven technologies 

[55]. Issues such as fairness, transparency, and data privacy must 

be addressed to build trust and prevent unintended consequences. 

Regulatory requirements, such as those mandating interpretable 

decision-making or safeguarding sensitive information, vary 

across applications and can introduce additional computational 

challenges. A domain-neutral approach focuses on selecting 

domains where these constraints can be effectively managed 

within the system’s design and operational framework. 

 

 

To measure the performance of each alternative in the MCDA 

process for XDSS, a three-point Likert scale was established to 

evaluate levels of performance across all identified criteria, 

aligning with Step 3 of the MCDA process. This step ensures a 

standardized and consistent assessment framework, enabling 

objective comparisons of alternatives. The measures of 

performance for each criterion are outlined in the final column of 

Table 1, representing high, medium, and low performance levels. 

For example, “Data Characteristics” was evaluated as 1 (high 

complexity), 2 (moderate complexity), or 3 (low complexity). 

 

 

 

This section of the paper delineates the meticulous process 

employed in the evaluation and decision-making phase of 

selecting application areas for optimizing computational 

complexity in XDSS using MCDA. The process is centred on 

four crucial activities such as scoring of alternatives, weighting 

of criteria, aggregation of scores and sensitivity analysis to derive 

a conclusive evaluation for each considered application area. 

 

Scoring of Alternatives 

The scoring of alternatives aligns with Step 4 of MCDA process, 

where the performance of each application area is systematically 

5.  CRITERIA FOR APPLICATION AREA SELECTION 

6.  PERFORMANCE MEASUREMENT 

7.  EVALUATION AND DECISION-MAKING PROCESS 
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Criteria Description Reason for Inclusion Measure of Performance 

Data Characteristics 
Evaluates data volume, 

structure, and complexity 

Ensures XDSS can handle 

diverse data efficiently while 

maintaining performance 

1 = High complexity (large, 

unstructured, or high-dimensional),  

2 = Moderate complexity,  

3 = Low complexity 

Explanation 

Requirements 

Assesses the trade-off between 

fidelity and simplicity in 

explanations 

Aligns explanation complexity 

with user and system needs 

1 = High fidelity (detailed),  

2 = Moderate fidelity (balanced),  

3 = Simple explanations (minimal 

detail) 

Real-Time Processing 

Needs 

Measures the urgency and 

timeliness of decision-making 

Addresses latency constraints 

critical for time-sensitive 

decisions 

1 = Real-time (milliseconds),  

2 = Near real-time (seconds to 

minutes),  

3 = non-time-sensitive (hours or 

more) 

Scalability Demands 
Evaluates potential for growth 

in data volume or user demand 

Ensures the system can adapt to 

increasing scale without 

performance degradation 

1 = Highly scalable (handles 

significant growth),  

2 = Moderately scalable,  

3 = Limited scalability 

Ethical and 

Regulatory 

Constraints 

Assesses fairness, transparency, 

and compliance requirements 

Ensures the system meets legal 

and ethical standards 

1 = High (stringent requirements),  

2 = Moderate,  

3 = Low (minimal requirements) 

 

Domain Application Area DC ER RPN SD ERC 

Healthcare 

Patient Monitoring Management 1 1 1 2 1 

Diagnosis and Treatment Planning 1 1 2 2 1 

Emergency Triage Assessment 2 2 1 2 1 

Engineering 

Predictive Maintenance 2 2 1 2 2 

Design Optimization 2 1 2 1 1 

Quality control/Safety Analysis 1 1 1 1 1 

Transportation 

Traffic Management 2 2 1 2 2 

Autonomous Vehicles 1 1 1 1 2 

Fleet Management 2 2 1 2 2 

Finance 

Risk Assessment 1 1 2 1 1 

Fraud Detection 1 1 1 1 1 

Stock Prediction 2 1 3 2 2 

Business 

Strategic Planning 3 2 2 3 2 

Supply Chain Optimization 2 1 2 1 2 

Customer Relationship Management 2 2 3 1 2 

Education 

Adaptive Learning Models 3 2 3 2 2 

Student Performance Analytics 2 1 2 1 2 

Curriculum Design Optimization 1 1 2 2 1 

DC = Data Characteristics, ER = Explanation Requirements, RPN = Real-Time Processing Needs, 

SD = Scalability Demands, ERC = Ethical and Regulatory Constraints 

 

Weighting of Criteria 

The weighting of criteria corresponds to Step 5 of the Multi-

Criteria Decision Analysis (MCDA) process, where the relative 

importance of each criterion is determined to reflect strategic 

priorities and stakeholder objectives. Weighting ensures that 

criteria contributing more significantly to decision-making 

receive higher influence in the final evaluation. 

 

In this study, the Analytic Hierarchy Process (AHP) was 

employed to assign weights to the criteria. This technique 

provides a systematic and objective method for determining the 

importance of each criterion by comparing them pairwise. The 

assigned weights reflect the degree to which each criterion 

impacts the suitability of an application area for XDSS 

deployment. The pairwise comparisons required for AHP were 

conducted by the authors, based on insights synthesized from 

existing literature [25], [56] on XDSS applications and 

challenges. 

 

which measures performance levels as high, medium, or low. 

This approach ensures a consistent, objective, and transparent 

evaluation framework. 

 

performance matrix, as depicted in Table 2. A standardized 

scoring method was applied using a three-point Likert scale, 

evaluated  against  the   identified  criteria  were  compiled  into  a  

Table 1: The criteria considered, definition and measurement levels 

Table 2: Performance Matrix for Potential Areas for Research in XDSS 
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The finalized weights were compiled and are presented in Table 

3, providing a clear representation of the relative importance of 

each criterion. Higher weights were assigned to criteria such as 

Real-Time Processing Needs, Scalability Demands, and Data 

Characteristics, which are critical for optimizing computational 

complexity in XDSS. 
 

Criteria Weight Rationale for Weight Assignment 

Data Characteristics 0.20 
Data volume, structure, and complexity significantly influence the computational 

burden and system design requirements. 

Explanation Requirements 0.25 
The trade-off between fidelity and simplicity impacts the usability and interpretability 

of XDSS, particularly in high-stakes applications. 

Real-Time Processing Needs 0.25 
Real-time or near-real-time requirements are critical for time-sensitive applications like 

healthcare triage or autonomous systems. 

Scalability Demands 0.20 
Scalability ensures the system can handle increasing data and user loads, making it 

crucial for long-term viability. 

Ethical and Regulatory 

Constraints 
0.10 

Legal and ethical compliance are essential in regulated sectors like healthcare and 

finance, affecting trust and adoption. 

Aggregation of Scores 

The aggregation of scores aligns with Step 6 of the Multi-Criteria 

Decision Analysis (MCDA) process, where the performance 

scores of each alternative are combined with their corresponding 

criteria weights to generate a final ranking. This step ensures that 

both the performance of alternatives and the relative importance 

of criteria are accounted for in a systematic and transparent 

manner. 

 

To aggregate the scores, a weighted sum method was applied. 

The performance scores for each criterion, obtained in Step 4, 

were multiplied by the respective weights determined in Step 5. 

The weighted scores were then summed for each application area 

to produce a Total Weighted Score, reflecting the overall 

suitability of the alternative. 

 

Aggregated Score=∑(Score for each criterion×Weight of the cri

terion) 

 

The results of this aggregation process are presented in Table 4, 

which displays the total weighted scores for all evaluated 

application areas as well as the ranking. These scores provide a 

clear basis for ranking the alternatives, with higher scores 

indicating greater alignment with the evaluation criteria and 

strategic objectives. 

 

Sensitivity Analysis 

The sensitivity analysis aligns with Step 7 of the Multi-Criteria 

Decision Analysis (MCDA) process, where the robustness of the 

aggregated scores and rankings from Step 6 is tested under 

varying conditions. This step ensures that the evaluation results 

remain consistent and reliable, even when weights assigned to
 

Domain Application Area DC ER RPN SD ERC AWS Rank 

Healthcare 

Patient Monitoring Management 0.2 0.25 0.25 0.4 0.1 1.2 4 

Diagnosis and Treatment Planning 0.2 0.25 0.5 0.4 0.1 1.45 7 

Emergency Triage Assessment 0.4 0.5 0.25 0.4 0.1 1.65 11 

Engineering 

Predictive Maintenance 0.4 0.5 0.25 0.4 0.2 1.75 12 

Design Optimization 0.4 0.25 0.5 0.2 0.1 1.45 6 

Quality control/Safety Analysis 0.2 0.25 0.25 0.2 0.1 1 1 

Transportation 

Traffic Management 0.4 0.5 0.25 0.4 0.2 1.75 12 

Autonomous Vehicles 0.2 0.25 0.25 0.2 0.2 1.1 3 

Fleet Management 0.4 0.5 0.25 0.4 0.2 1.75 12 

Finance 

Risk Assessment 0.2 0.25 0.5 0.2 0.1 1.25 5 

Fraud Detection 0.2 0.25 0.25 0.2 0.1 1 1 

Stock Prediction 0.4 0.25 0.75 0.4 0.2 2 15 

Business 

Strategic Planning 0.6 0.5 0.5 0.6 0.2 2.4 17 

Supply Chain Optimization 0.4 0.25 0.5 0.2 0.2 1.55 9 

Customer Relationship Management 0.4 0.5 0.75 0.2 0.2 2.05 16 

Education 

Adaptive Learning Models 0.6 0.5 0.75 0.4 0.2 2.45 18 

Student Performance Analytics 0.4 0.25 0.5 0.2 0.2 1.55 9 

Curriculum Design Optimization 0.2 0.25 0.5 0.4 0.1 1.45 7 

DC = Data Characteristics, ER = Explanation Requirements, RPN = Real-Time Processing Needs, 

SD = Scalability Demands, ERC = Ethical and Regulatory Constraints, AWS =Aggregated Weighted Score 

 

Table 3: Proposed Weights for Criteria 

Table 4: Aggregated Weighted Scores 
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key criteria are adjusted to reflect changes in strategic priorities 

or assumptions. 

 

To conduct the analysis, weights for critical criteria such as Real-

Time Processing Needs (RPN) and Data Characteristics (DC) 

were systematically varied across three scenarios as depicted in 

figure 3: 

• Scenario 1 prioritized data complexity and real-time 

processing needs. 

• Scenario 2 emphasized scalability while reducing the 

importance of explanation requirements. 

• Scenario 3 focused on explanation fidelity and real-

time decision-making, aligning with time-sensitive and 

high-stakes applications. 

 

The results revealed that high-ranked application areas, such as 

Patient Monitoring Management and Fraud Detection, 

maintained stable positions across all scenarios, demonstrating 

the robustness of the MCDA framework. In contrast, areas with 

moderate initial scores, like Traffic Management and Stock 

Prediction, exhibited greater sensitivity to changes in specific 

criteria weights. This highlights the importance of accurately 

prioritizing criteria to reflect organizational goals and the impact 

of computational complexity. 

 

The sensitivity analysis validated the reliability of the evaluation 

framework. While minor shifts occurred, the overall rankings 

remained stable for top-ranked application areas, providing 

stakeholders with confidence in the consistency and resilience of 

the decision-making process. This step underscores the 

credibility of the selected application areas for XDSS 

deployment, ensuring they remain relevant under varying 

assumptions and priorities. 

 

 

This section discusses the selection and strategic implications of 

the top-ranked application areas, highlighting their alignment 

with key evaluation criteria and their potential impact. It also 

explores the challenges and considerations that may arise during 

implementation, including computational, ethical, and scalability 

concerns. Finally, actionable insights and recommendations are 

presented to guide stakeholders in deploying XDSS effectively 

in diverse domains, ensuring alignment with organizational goals 

and optimizing system performance. 

 

Selection and Strategic Implications 

The results identified Fraud Detection and Quality 

Control/Safety Analysis as the top-ranked application areas, both 

achieving the highest aggregated weighted score of 1.00. This 

strong performance highlights their alignment with key criteria, 

such as real-time decision-making needs, explanation 

requirements, and scalability: 

Fraud Detection (Finance): Real-time anomaly detection, 

transparency in decisions, and regulatory compliance are critical 

in financial systems, making XDSS a suitable solution for 

enhancing security and stakeholder trust. 

Quality Control/Safety Analysis (Engineering): XDSS 

can provide interpretable insights to ensure safety and optimize 

quality processes, particularly in high-risk industrial 

environments where explainability and real-time decision 

support are essential. 

 

Other high-ranking areas included Autonomous Vehicles (Rank 

3, score 1.10) and Patient Monitoring Management (Rank 4, 

score 1.20). 

Figure 3: Sensitivity Analysis on Impact Weight Adjustments 

8.  DISCUSSION OF FINDINGS  

44                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 23 - NUMBER 2 - YEAR 2025                             ISSN: 1690-4524  



Autonomous Vehicles (Transportation): The need for 

low-latency, high-accuracy decisions in dynamic and safety-

critical environments makes this area well-suited for XDSS. 

Patient Monitoring Management (Healthcare): XDSS 

can process complex medical data in real time to improve patient 

outcomes and deliver transparent, actionable insights for 

healthcare providers. 

 

Several mid-ranked application areas demonstrated strong 

potential but were influenced by specific criteria: 

Emergency Triage Assessment (Healthcare): Ranked 5th 

with a score of 1.25, this application area requires real-time 

processing and accurate decision-making to prioritize patient 

care during emergencies. However, scalability and ethical 

constraints may add complexity to its implementation. XDSS can 

assist medical staff in quickly evaluating patient conditions and 

determining care priorities, improving efficiency and reducing 

human error. 

Risk Assessment (Finance): Also ranked 5th with a score 

of 1.25, this area emphasizes scalability and explanation fidelity 

for managing financial risks. XDSS can streamline risk 

evaluation processes for loans and investments while ensuring 

transparency for compliance and stakeholder trust. 

 

Lower-ranked areas, such as Stock Prediction (Rank 15, score 

1.55) and Customer Relationship Management (CRM) (Rank 16, 

score 1.60), scored lower due to reduced real-time demands and 

lower complexity in explanation requirements: 

Stock Prediction (Finance): While predictive accuracy is 

critical, the reduced focus on real-time needs and interpretability 

may limit the immediate priority for XDSS deployment. 

Customer Relationship Management (Business): CRM 

applications focus more on personalization and scalability rather 

than explanation fidelity, which lowers the critical importance of 

XDSS. 

However, these areas still hold value for future XDSS research, 

particularly in improving interpretability for end users and 

addressing scalability concerns for large datasets. 

 

Challenges and Ethical Considerations 

The results underscore several challenges and considerations for 

XDSS deployment: 

Computational Complexity: High-ranked areas such as 

Fraud Detection and Emergency Triage Assessment require 

significant computational resources to manage real-time 

processing and large datasets. Optimizing workflows and 

resource allocation is crucial to address these challenges. 

Explanation Trade-offs: Achieving a balance between 

explanation fidelity and simplicity remains critical, especially in 

time-sensitive applications like Emergency Triage and 

Autonomous Vehicles. 

Scalability Constraints: Mid- and low-ranked areas may 

face challenges in scaling XDSS solutions to accommodate 

growing datasets or user bases while maintaining performance. 

Ethical and Regulatory Compliance: Areas like 

healthcare and finance require strict adherence to transparency, 

fairness, and ethical standards to maintain trust and comply with 

regulations. 

 

 

This study highlights the importance of a systematic, criteria-

driven approach to evaluating potential application areas for 

XDSS. By employing MCDA framework, this research ensures 

that decision-making for XDSS deployment is guided by 
quantifiable, objective measures, integrating key factors such as 

data complexity, real-time processing needs, scalability, and 

ethical considerations. The findings highlight the necessity of 

aligning computational requirements with domain-specific 

constraints to enhance both system efficiency and explainability. 

 

The findings identify high-ranking areas such as Fraud 

Detection, Quality Control/Safety Analysis, and Emergency 

Triage Assessment as ideal candidates for XDSS deployment. 

These areas demonstrate strong alignment with the evaluation 

criteria, showcasing their potential to benefit from explainable, 

computationally efficient decision support systems. At the same 

time, mid-ranked and lower-ranked areas, including Traffic 

Management and Stock Prediction, offer opportunities for future 

research and optimization, particularly in addressing specific 

challenges such as scalability and explanation fidelity. 

 

The study also underscores several challenges must be addressed 

to ensure the practical implementation and long-term viability of 

XDSS. Managing computational complexity, balancing 

explanation fidelity with simplicity, and adhering to strict ethical 

and regulatory standards remain persistent concerns. 

Additionally, domain-specific constraints may impose 

limitations on XDSS performance, necessitating continuous 

refinement of evaluation criteria and methodologies. 

Strengthening transparency, fairness, and regulatory compliance 

is essential, particularly in sensitive sectors where trust and 

accountability are paramount. 

 

Based on the findings, several actionable recommendations are 

proposed to guide XDSS deployment. Priority should be given to 

high-impact areas such as Fraud Detection and Patient 

Monitoring Management, where the need for real-time decision-

making and interpretability is most critical. Efforts should focus 

on enhancing algorithmic efficiency and infrastructure to address 

the computational demands inherent in high-stakes, real-time 

environments. Additionally, developing scalable solutions is 

essential to ensure that XDSS can adapt to increasing data 

volumes and user demands, particularly in domains with growing 

datasets or expanding user bases. Finally, aligning XDSS 

deployments with transparency, fairness, and regulatory 

compliance is crucial to building stakeholder trust and meeting 

legal standards, especially in sensitive and regulated sectors. 

 

Future research should explore additional application areas, 

refine evaluation criteria, enhance sensitivity analysis 

techniques, and strengthen validation with empirical studies. By 

addressing these avenues, XDSS can be optimized to deliver 

greater impact and utility across a broader range of domains, 

ensuring their adoption as reliable tools for decision support in 

increasingly complex environments. 
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