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ABSTRACT

This study investigates the application of the Xception 

architecture for accurate classification of skin lesions, focusing 

on the early detection of melanoma and other malignant skin 

conditions. Utilizing deep learning techniques, the research aims 

to enhance the precision and efficiency of skin lesions diagnosis. 

The study utilizes the TensorFlow framework and the 

HAM10000 dataset, comprising a vast collection of benign and 

malignant skin lesion images, for training and evaluating the 

Xception model. Preprocessing steps, including data splitting, 

augmentation, and image resizing, are applied to the dataset. The 

Xception architecture, a deep convolutional neural network, 

serves as the foundational model, supplemented with customized 

classification layers for specialized features and predictions. The 

model’s performance is evaluated using diverse metrics. The 

experimental outcomes reveal the Xception architecture’s 

potential in accurately classifying skin lesions. Moreover, the 

study underscores the significance of extensive and diverse 

datasets, as well as rigorous clinical validation, in the 

development of deep learning models for skin cancer detection. 

The findings contribute to the advancement of early melanoma 

detection, thereby improving patient outcomes and alleviating the 

burden of the disease.

learning

vision. The research suggests the development and deployment 

of a model with the aid of the mentioned architecture to 

automatically classify images of skin lesions, with the goal of 

identifying distinct skin cancer types as melanoma.

For this purpose, we used the HAM10000 dataset, comprising 

over 10,000 images of benign and malignant skin lesions 

captured through dermatoscopy. We employed these images to 

train and assess our model within the TensorFlow framework, a 

leading platform for creating deep learning models.

By addressing the challenge of accurately classifying skin 

lesions, we aim to contribute to the early detection and 

intervention of melanoma, ultimately improving patient 

outcomes and reducing the burden of this devastating disease [5].

The structure of this paper is as follows: in Section 2, we examine 

the existing literature on skin lesions detection and classification 

using deep learning methods and CNN architectures; in Section 

4, we outline the suggested approach, encompassing data 

preprocessing, model training, and evaluation; finally, in Section 

5, we explore the results obtained, study limitations, and potential 

enhancements for future work.

!

Here, we present a thorough overview of the latest research 

advancements in the field of AI for skin lesions recognition, 

shining a spotlight on the methodologies employed, and the 

outcomes achieved.

A significant aspect of several studies has been the adoption of 

convolutional neural networks (CNNs), credited with its 

exceptional abilities in image recognition. For example, a study 

pitted the diagnostic accuracy of a deep learning CNN against 58 

dermatologists in differentiating dermoscopic images of 

melanocytic lesions [6]. Their custom CNN surpassed most 

dermatologists at matching sensitivity levels, a success attributed 

to the robustness of the CNN trained to classify dermoscopic 

images of melanocytic lesions. On similar lines, another research 

group capitalized on the strength of CNNs, achieving an AUC of 

0.96 for melanoma diagnosis through the categorization of skin 

lesions into disease categories [7]. This notable result underscores 

the promise of deep learning in elevating the accuracy and 

efficiency of diagnosing skin diseases, especially in geographies 

with restricted access to dermatological services. It was 
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2. RELATED WORKS 

Globally, skin cancer ranks among the most prevalent diseases 

[1], with its occurrence steadily increasing because of factors 

such as extended sun exposure and genetics. Detecting skin 

cancer early and accurately is vital for enhancing survival rates 

[2] and minimizing treatment expenses [3]. It is crucial to 

categorize various skin cancer types to facilitate effective early 

detection and provide suitable treatment for patients [4]. In this 

regard, the implementation of deep learning methodologies for 

classifying skin cancer images has demonstrated promising 

results concerning efficiency and precision [5].

This study, entitled ”Use of Xception architecture for 

classification of skin lesion types,” has it focus on the 

classification of skin lesions to facilitate the early detection of 

melanoma and other types of malignant skin lesions using a 

technique based on the Xception architecture. This architecture is 

a prominent convolutional neural network (CNN) in computer 
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recommended that more clinical images be included, particularly 

from diverse patient populations, to bolster the performance of 

the diagnostic system [6,7].

Progress in the field of deep learning also extends to skin lesion 

segmentation, an important aspect of skin cancer treatment. Two 

groundbreaking studies offered new deep learning-based 

methodologies for this task. One suggested a pipeline model 

which combined the YOLO deep convolutional neural network 

and the GrabCut algorithm [9], while the other proposed an 

ensemble method amalgamating Mask R-CNN and DeeplabV3+ 

[10]. Both techniques demonstrated superior performance 

compared to current state-of-theart techniques for skin lesion 

segmentation, indicating potential for further enhancements 

through hyperparameter fine-tuning and additional pre-

processing techniques [9,10].

The idea of synthesizing human and AI decision-making was also 

explored, showing potential for enhancing skin cancer diagnosis 

accuracy. A hybrid approach that combined the decisions of a 

CNN with those of 112 dermatologists using the XGBoost 

algorithm, a flexible machine learning system, exhibited superior 

performance [8]. This indicates the potential of AI to augment 

human expertise rather than replacing it. A study introduced Deep 

Learning Studio (DLS), a tool allowing nonprogrammers to 

create complex deep learning models. Models created on this 

platform achieved an area under the curve of 99.77 percent, 

illustrating the potential of cloud-based deep learning models in 

skin cancer detection [11]. Optimization algorithms have played 

a crucial role as well. A research team put forth an innovative 

method combining an optimized CNN and an enhanced version 

of the whale optimization algorithm (WOA) [12]. The WOA 

algorithm was used to optimize the CNN, leading to superior 

performance in skin cancer diagnosis as compared to other 

methods.

Delving into two additional researches, we come across two more 

methodologies. The first one presents a multi-modal deep 

learning system that leverages both patient metadata and skin 

lesion images to diagnose melanoma [13]. This model 

emphasizes the importance of context and demonstrates a 

comprehensive approach to melanoma diagnosis, integrating both 

image-based and patient demographic data. The second paper 

presents a transfer learning approach, utilizing a pre-trained 

InceptionV3 model with an attention mechanism for classifying 

skin cancer images [14]. This method demonstrates the promise 

of transfer learning and the value of model interpretability in 

improving diagnostic accuracy.

comprehensive platform for machine learning and artificial 

intelligence. It enables model creation across various platforms, 

including desktops, mobile devices, the web, and the cloud, 

offering deployment flexibility for AI solutions. Whether you 

prefer pre-trained models or custom training, TensorFlow 

provides essential tools. Additionally, it includes multiple data 

tools for preprocessing, consolidating, and debugging substantial 

data volumes. In summary, TensorFlow is a versatile platform 

driving the development and deployment of machine learning 

models, streamlining the construction of effective and scalable AI 

solutions. [17]

Keras

Keras is a Python-based open-source library for Neural 

Networks, compatible with TensorFlow, Microsoft Cognitive 

Toolkit, or Theano. It emphasizes user-friendliness, modularity, 

and extensibility to facilitate rapid experimentation with deep 

learning networks. Keras offers diverse implementations of 

neural network components like layers, objective functions, 

activation functions, and optimizers. It stands out as a versatile 

and widely used tool in the field of artificial intelligence. [18]

Xception’s Architecture

Xception is a deep convolutional neural network architecture 

incorporating Depthwise Separable Convolutions, considered an 

"extreme" version of an Inception module. It consists of a linear 

stack of layers with depthwise separable convolutions and 

residual connections. Developed by Francois Chollet, creator of 

Keras at Google, Xception offers a distinctive approach to CNNs, 

particularly notable for its effectiveness in image classification 

tasks.[19]

Dataset

In this study, the HAM10000 dataset was utilized to address the

issue of limited dermatoscopy datasets in early skin cancer

classification studies [15]. The HAM10000 dataset, published in

2018, consists of 10,015 skin lesion images. These categories

include actinic keratoses and intraepithelial carcinoma/Bowen’s

disease (akiec), basal cell carcinoma (bcc), benign keratosis-like

lesions (solar lentigines/seborrheic keratoses and lichen-planus

like keratoses, bkl), dermatofibroma (df), melanoma (mel),

melanocytic nevi (nv), and vascular lesions (angiomas,

angiokeratomas, pyogenic granulomas and hemorrhage,

vasc).The labels of the images were confirmed through various

means, such as histopathology, reflectance confocal microscopy,

follow-up, or expert consensus [16]. Figure 1 provides a

visualization of the class distribution, where the largest class (nv)

contains 6,705 images, while the smallest class (df) has only 115

images.

Fig. 1. Amount of images per skin lesion type after duplicate
drop.

Each of these studies brings to light the remarkable potential of 

deep learning and AI in skin cancer detection and diagnosis, 

notwithstanding the inherent challenges. 

TensorFlow

TensorFlow is a potent open-source software library and a 

4. METHOD

3. GENERAL CONTEXT
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To execute our experiments, we need to prepare this data

Although the dataset consists of 10,015 images, an examination

of the metadata reveals that there are only 7,470 distinct skin

lesions. The remaining images are duplicates captured at different

magnifications or angles of view. The presence of duplications is

illustrated in Figure 2.

Fig. 2. Example of a figure caption.

Based on this information, we have preprocessed the dataset to

ensure data quality and compatibility with the Xception

architecture. This includes data splitting, augmentation, and

resizing of images to a standardized resolution. It is important to

note that the dataset does not have information on the race

associated with each image.

Data Splitting

Prior to training and testing the AI models, a duplicate removal

step was performed on the dataset, resulting in a dataset with

7,470 distinct lesion images. The non-duplicate dataset was then

divided into the following subsets:

� Training set: Comprising 60 percent of the non-duplicate 

dataset (4482 images).

� Validation set: Composed of 20 percent of the nonduplicate

dataset (1494images).

� Test set: Consisting of 20 percent of the non-duplicate

dataset (1,494 images).

The validation data serves as an unbiased evaluation of the model

that has been trained on the training data, while also tuning the

hyperparameters. The testing data is used for an unbiased

evaluation of the final model that was trained using the training

data.

Data Augmentation

The training set underwent data augmentation, including

operations such as rotation, flipping, cut out, and cropping. A

python code was written to define the parameters that were going

to be applied to the training images. Table 1 shows the parameters

used with the class ImageDataGenerator of TensorFlow to

accomplish this task.

TABLE I

PARAMETERS USED FOR DATA AUGMENTATION

Parameters Value Brief Description

rescale 1 / 255

Scale the pixel values of the 

images to a range of 0 to 1 by 

dividing by 255. This is important 

to normalize the input data and 

facilitate model training.

rotation range 10
The images will be randomly 

rotated up to 10 degrees.

zoom range 0.1
Random zoom range to apply to 

images during training

width shift 

range
0.0

In this case, the images will not be 

shifted horizontally

height shift 

range
0.0

In this case, the images will not be 

shifted vertically

Image Resizing

Additionally, all samples were resized to a resolution from 

650x450 to 256x256 pixels during the preprocessing stage to 

reduce training time and save resources.

In summary, data augmentation and resizing were applied to 

improve the performance and generalization capability of deep 

learning models, this is especially useful when working with 

small or large data sets.

Model Architecture

For the skin lesion classification task, the Xception architecture 

was chosen as the deep learning model. 

Transfer learning was employed to utilize the knowledge and 

feature representations learned from pre-trained models on large-

scale datasets. The pre-trained model, which was pre-trained on 

the ImageNet dataset, consisting of 14,197,122 images, which 

served as the base model for our skin lesion classification task.

To incorporate this architecture into our model design, the 

following steps were followed:

� Pre-trained Model Initialization: The pre-trained Xception 

model was loaded without the top classification layers. This 

model has learned rich and general image features from the 

vast ImageNet dataset.

� Custom Classification Layers: On top of the pre-trained base 

model, custom classification layers were added. These 

layers allow the network to learn task-specific features and 

make predictions based on the skin lesion images.

The resulting model architecture consists of the pre-trained base 

model followed by the custom classification layers which 

include: (1) A convolutional layer is added with 64 filters, each 

of size 3x3, and ReLU activation function. This layer helps 

extract additional features from the representations learned by 

Xception. (2) A max pooling layer with a window size of 2x2 is 

added to reduce the dimensionality of the extracted features. (3). 

A dropout layer is added with a rate of 0.40, which helps prevent 

overfitting by randomly deactivating 40 percent of the neurons 

during training. (4) A flattening layer is added to convert the 

output from the previous layer into a one-dimensional vector, 

preparing it for fully connected layers. (5) A densely connected 
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layer with 128 neurons and ReLU activation function is added. 

Additionally, an L2 regularization with a penalty of 0.001 is 

applied to avoid overfitting. (6) Another dropout layer is added 

with a rate of 0.4 to continue preventing overfitting. (7) Finally,

the output layer with 7 neurons and softmax activation function 

is added, which produces the probability output for each of the 7 

classes of skin lesions.

Experiment Protocol

This work was developed on a laptop with a Ryzen 5800H CPU,

an NVIDIA GeForce RTX 3060 GPU of 6GB and 16 GB of RAM

at 3200Mhz. To train and test the models we used VS Code with

Jupyter Notebooks and, to run the cells of code, it needs and

environment with “TensorFlow 2.10.1”, “Keras 2.10.0 and

“Python 3.10.11”. The source code for this project is available at

https://github.com/cledmir/DCPModel.

Validation Metrics

To evaluate the performance of the model a set of baseline metrics

where employed. These baseline metrics are developed from True

positive (TP), True negative (TN), False positive (FP) and False

negative (FN) predictions. Those baseline metrics are:

� Accuracy: The percentage of correctly classified skin

lesions.

(1)

� Precision: The proportion of true positive predictions out of

the total predicted positive instances.

(2)

� Recall: The proportion of true positive predictions out of the

actual positive instances.

(3)

� F1-Score: The harmonic mean of precision and recall,

providing a balanced measure between the two.

(4)

These baseline metrics will be used as a starting point for further

validation of our proposed model, which will include a model

comparison between other 2 ImageNet base models and a

confusion matrix with a classification report for the proposed

model.

Results

After performing the experiments using the preprocessed dataset

presented in Section IV, we evaluate their performance using the

evaluation metrics mentioned above:

Comparison Model: Table 2 presents a comparative analysis 

of the performance of the models using the baseline metrics. The

evaluation was performed on the test set, which was previously

unseen by the models.

TABLE II

MODEL COMPARISON USING VALIDATION METRICS

Model Accuracy Precision Recall F1-Score

Xception 0.81 0.89 0.74 0.40

Resnet50V2 0.80 0.85 0.75 0.39

Inception 

V3

0.77 0.90 0.70 0.21

The Xception model achieved the highest accuracy with 81% and 

a F1-score of 40% among the three models. Followed by the 

Resnet50V2 and Inception V3 models with an accuracy of 0.80% 

and 0.77% respectively.

Confusion Matrix: We generate the confusion matrix for each 

model, which shows the number of correct and incorrect 

predictions for each class. Figure 3 shows the confusion Matrix 

for the proposed model, followed by Figure 4 and 5 for the 

Resnet50V2 and Inception V3 models.

Fig. 4. Confusion Matrix of the ResnetV2 model

Fig. 5. Confusion Matrix of the Inception V3 model

Fig. 3. Confusion Matrix of the Xception model

5. EXPERIMENTS
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These confusion matrix results support the accuracy, recall and 

F1-score metrics presented in the model comparison table. The 

Xception and ResNet50V2 models perform similarly in terms of 

the confusion matrix, although Xception shows a slight advantage 

in most classes. On the other hand, Inception V3 shows inferior 

performance compared to the other two models, which is 

reflected in the confusion matrix. 

 

Classification Report: We calculate accuracy, precision, 

recall, F1-score and support of each model for each class using 

the classification report. These metrics provide us with detailed 

information about the model’s performance in classifying each 

skin lesion type. Bellow, we have the classification reports for the 

proposed model and the compared models. 

 

 

Fig. 6. Classification Report of the Xception model 

 

Fig. 7. Classification Report of the Resnet50V2 model 

 

Fig. 8. Classification Report of the Inception V3 model 

Based on the information provide in every classification report, 

we can observe that. 

For the Xception model: 

� Accuracy varies between the different classes, being highest 

in classes 5 and 6. 

� Recall also shows significant variations between classes, 

being high for classes 5 and 2, and very low for class 3. 

� The f1-score is relatively low for most classes, especially for 

classes 0, 3 and 4. 

For the Resnet50V2 model: 

� Accuracy is lower overall compared to the Xception model, 

especially for classes 0 and 6. 

� The recall shows similar performance to the Xception 

model, being higher for classes 5 and 2. 

� The f1-score remains relatively low for classes 0, 3 and 4. 

For the Inception V3 model: 

� Accuracy and recall are very low overall, especially for 

classes 0, 1 and 4. 

� The f1-score is low for most classes, with slightly better 

performance in classes 2, 5 and 6. 

Discussion 

In this subsection, we proceed to discuss the results obtained 

above for each validation metric. 

 

Model Comparison: Table 2 shows the comparison results 

obtained by the Xception, Resnet50V2 and Inception V3 models 

using validation metrics. Although the Xception model shows the 

highest overall accuracy (0.81) and F1-Score (0.40), it is also 

important to consider the imbalance of the data. In particular, the 

performance of the models in detecting minority classes may be 

affected due to the unequal distribution of instances in the dataset. 

Therefore, caution is needed when interpreting these results and 

consider that additional approaches, such as class balancing 

techniques, may be required to improve the ability of the models 

to adequately classify all skin lesion classes. 

Confusion Matrix: By analyzing the confusion matrices for the 

three models (Xception, ResNet50V2 and Inception V3), some 

trends can be observed: 

� Xception: The Xception model shows a confusion matrix 

that reflects reasonably good performance for most classes. 

However, some confusion can be observed in classes 1, 4 

and 5, where some samples were misclassified into other 

classes. Class 6 shows a high hit rate, as most samples were 

correctly classified as belonging to that class. 

� ResNet50V2: The confusion matrix of ResNet50V2 also 

shows acceptable overall performance. As with Xception, 

there is some confusion in classes 1, 4 and 5. However, 

compared to Xception, ResNet50V2 shows a tendency to 

classify more samples in class 1 as class 2. Class 6 also has 

a high hit rate. 

� Inception V3: The confusion matrix of Inception V3 shows 

a lower overall performance compared to the other two 

models. High confusion can be observed in classes 1, 2 and 

5, where samples were misclassified into other classes. 

Class 6 again shows a high hit rate. 

Classification Report 

In general, the three models show difficulties in correctly 

classifying certain classes, especially those with a smaller number 

of samples or imbalance in the data. This may be due to the 

models’ failure to capture the distinguishing features of those 

classes or the lack of sufficient examples to learn correctly. 

 

Furthermore, the results highlight the superiority of the Xception 

model in terms of accuracy, recall and f1-score compared to the 
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Resnet50V2 and Inception V3 models. Therefore, the Xception 

model could be considered as the most suitable model for skin 

lesion classification in this dataset, due to its overall better 

performance. However, it is important to keep in mind the need 

to address class imbalance and explore additional approaches to 

improve performance across classes.

In this paper, we proposed the utilization of the Xception model 

for skin lesion classification using the HAM10000 dataset for 

training. Through our experiments and analysis, we have gained 

several important insights.

Firstly, our results indicate that the Xception model outperformed 

the baseline models, Resnet50V2 and Inception V3, in terms of 

accuracy, precision, recall, and F1-score. This suggests that the 

model is well-suited for the task of skin lesion classification and 

can potentially aid in accurate diagnosis and treatment.

Moving forward, there are several avenues for future exploration 

and improvement. One potential direction is to investigate the 

application of transfer learning and fine-tuning techniques. By 

leveraging pre-trained models on large-scale datasets, we can 

enhance the generalization and efficiency of our model, 

potentially achieving even higher accuracy and robustness.

Lastly, an interesting prospect for future research is the 

exploration of transformer-based models in skin lesion 

classification. This avenue can offer new insights and 

advancements in the field of skin lesion classification.
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