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This study demonstrates how endoscopic surgical data
can be analyzed using a supervised machine learning
(ML) classifier. Before the process begins, a computer-
generated 3D image representing a safe zone is inserted
into the endoscopic view. During surgery, the Laparo-
Guard Augmented Reality System collects positional data.
We perform two types of analysis on the collected data.
First, we analyze how the surgeon handles laparoscopic
surgical tools based on the angular velocity and angular
acceleration of the tool. Next, we examine the risk asso-
ciated with the entire surgical process in relation to the
safe zone using all collected data, including the average
linear and angular speeds of the surgical tool.

Keywords: Augmented Reality, Endosurgery, Data Pro-
cessing, Machine Learning, Supervised Learning

In this work, we extend our previous work [1], [2]
and create an automated framework to assess minimally
invasive surgical (MIS) procedures. The solution uses
augmented reality (AR) technology to collect data and
machine learning (ML) algorithms to classify risks ob-
served in the collected data.

Endosurgery is a subfield of MIS that uses an en-
doscope to look inside the body [3]. The endoscope
consists of a small camera and light inserted into the
body, allowing the surgeon to look at what is wrong inside
the body. A related subfield is laparoscopic surgery, also
referred to as keyhole surgery. It is a surgical technique in
which operations are performed through small incisions
(usually 0.5-1.5 cm). The procedure is observed using an
endoscope camera that projects a view of the body in real
time to the surgical display. The main advantage of MIS
surgery compared to open surgery is reduced pain and
shorter recovery time for the patient. However, these ad-
vantages are achieved only if the procedure is performed
without effective errors. Unfortunately, such errors are
not uncommon in laparoscopic surgeries. Indeed, intra-
operative and post-operative complications are prevalent
with laparoscopic surgery procedures [4]. Because of this,
there is a need to improve patient safety during laparo-
scopic surgery so that the benefits derived from such

procedures are achieved while the drawbacks are reduced
or eliminated. One of the most profound drawbacks of
laparoscopic surgery is the occurrence of unintentional
or inadvertent injuries to tissue structures adjacent to
or, occasionally, distant from the intended surgical site
or field. Bleeding has been reported to occur with an
incidence of up to nearly 10% in various series [5]. In the
pelvic cavity, for example, bowels, ureters, large organs,
and blood vessels can be injured either directly from
the heat or sharpness of the laparoscopic instruments, or
indirectly through the conduction of heat through nearby
tissues. Typically, such injuries are not appreciated at
the time of surgery because the specific injury sites are
hidden by blood or other tissues. A further complication
of such unintended (”iatrogenic”) injuries is that the
body’s response to the injury is often a delayed one.
This delayed response can be traumatic to the patient and
can sometimes result in one or more further, previously
unnecessary surgeries [6].

Augmented reality (AR) is a real-time view of the
physical world combined with computer-generated im-
ages. The amount of information in AR is always greater
than in reality itself. AR enhances the user’s percep-
tion of and interaction with the real world. Using the
latest AR techniques and technologies, the information
about the surrounding real world becomes interactive
and usable [7]. Areas of current AR implementation are
advertising and commercial, entertainment and education,
medical, and mobile applications for smartphones [7].
In this paper, we are focused on AR in medical, and
surgical procedures. AR indicates the safe or unsafe zone
and warns the surgeon in real time if the surgical tool
is approaching the safe zone boundary. The computer-
generated image of the safe zone is combined with the
endoscope camera image in real time.

Machine learning (ML) is a branch of artificial in-
telligence (AI) that enables a computer to learn to per-
form tasks by analyzing a large dataset without being
explicitly programmed [8]. AI is based on the assumption
that the process of human thought can be mechanized.
While many famous scientists, from Leibniz to Boole,
Tesla, and Turing, were studying the theory of learning,
the term artificial intelligence was coined in 1955 by
John McCarthy, Marvin Minsky, Nathaniel Rochester, and
Claude Shannon. ML-based AI has become popular due
to its ability to find complex patterns in large sets of data,
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whether that data comes from tables, plain text, or images.

There are three broad categories of ML algorithms:
supervised, unsupervised, and reinforcement. In this pa-
per, we use a supervised learning algorithm to classify
surgical risks.

ML applications in surgery have been rapidly ex-
panding in recent years [9], [10]. ML has been used to
evaluate surgeon performance [11] based on video from
an endoscopic camera. ML can help improve robotic
surgical training by tracking surgeon eye movements,
physical motion, and cognitive function [12].

Significant research has been done to incorporate AR
with medical imaging and instruments to enhance the
physician’s intuitive abilities. An example is a video
image of the operating site inside the body recorded by an
endoscopic camera device and presented on the surgical
monitor. However, the image and positions of the surgical
tools are viewed in 2D. That limitation can be partially
eliminated by tool navigation techniques that augment the
physician’s view [13].

The Italian research group ICAR CNR has worked
on several projects related to the visual presentation
of noninvasive imaging on an advanced multifunction
display. One of their projects aims to develop software
technologies and novel methodologies for morphological
and functional medical imaging applications [14].

AR can be used to manage a patient’s medical history,
post-stroke rehabilitation, treatment of psychological dis-
orders, and improve navigation for the visually impaired,
among other applications [7]. For instance, doctors can
check a patient’s medical record by putting on a head-
mounted display (HMD) and looking over the patient to
see virtual labels showing the patient’s past injuries and
illnesses [7]. So far, HMDs have been used for 3D visu-
alization. The motion of the HMD is tracked to compute
an appropriate perspective for the physician and tested
to increase clinical acceptance. However, HMD systems
still have a problem of lag for motion parallax and cannot
provide a natural view for multiple observers [15].

Visual tracking in MIS that uses image processing of
surgical tools with special markers is presented in [16].
The main idea is that surgeons can use a gesture as a com-
mand. For instance, opening and closing the laparoscopic
instrument, e.g., a grasper, is recognized by advanced
image processing systems as the command to overlay
previously taken computed tomography (CT) or magnetic
resonance imaging (MRI) images onto the endoscopic
camera view.

Ultrasound augmented with virtual reality for intrac-
ardiac surgery is presented in [17]. Tracking is provided
by an Aurora magnetic tracking system that determines
spatial position (sub-millimetre) and orientation (sub-
degree) tracking. They clearly showed that the limitation
of ultrasound tracking (in the absence of direct vision)
can be corrected by applying AR to tracked 2D or 3D
ultrasound images.

In addition to technical challenges, AR deployment
in endoscopic surgery faces other issues related to the
education and retraining of the medical staff. To the best
of our knowledge, this is the first work that describes
a framework of how to automatically assess the safety

of endoscopic surgical procedures by ML classifier using
data from an optical measurement system [18].

An infrared (IR) camera [18] collects the position and
orientation of the rigid tool body at a rate of up to 60
frames per second. We collect data for all six degrees
(6D) of freedom (x, y, z, roll, pitch, yaw) of the surgical
tool tip, as shown in Figure 1.
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Fig. 1: Moving Directions in 6D

Based on the input data, we perform two types of
analysis:

A) First, we analyze the input data without consid-
ering a virtual safe zone. We consider only the
recorded angular velocity and angular accelera-
tion of the tool.

B) Second, we analyze the data with a predefined
safe zone. We examine the risk of the entire
surgical process considering four features of
the preprocessed data: angular velocity, angular
acceleration, average linear speed, and average
angular speed.

A. Data Analysis without Considering a Safe Zone
This kind of analysis focuses on estimating the sur-

geon’s skills. For example, if the hands of the surgeon
start to shake, that will be noticed immediately in the data.
Furthermore, we can identify the time when this event,
or some other irregular behavior, happens. We quantify
how the surgeon drives the surgical tool and automatically
analyze surgical skills.

Fig. 2: Average Linear Speed (ALS)

2.   RELATED WORKS
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From Figure 2 we can see that during the first two
seconds, the average speed in the x direction is higher
than the average speed in the y and z directions. In
three seconds, the average speed in x decreases from
200 mm/sec to around 40 mm/sec. That is an indication
that the instrument is inserted vertically and in approx-
imately three seconds reaches the target of the surgical
procedure. From that moment, the average speed in the
x direction is similar to the average speed in the y and z
directions and it stays in the range between 20 mm/sec
and 40 mm/sec. This is an example of a normal start of
the surgical procedure.

Fig. 3: Average Angular Speed (AAS)

Average angular speed is shown in Fig 3. The angular
speed around the z axis (yaw) decreases from 0.45 rad/s
to about 0.10 rad/s in three seconds. That trend follows
that of the average x speed in the first three seconds,
but the variation between the angular speeds is less than
the variation in the linear speeds because the instrument
has to be moved to the target at the beginning of the
procedure.

Fig. 4: Angular Velocity (AV)

Fig. 5: Angular Acceleration (AA)

The angular velocity components yaw, pitch, and roll
are shown in Fig 4. This figure shows the small variations
and changes of direction not visible in the average speed
shown in Fig 3. Finally, we present the angular acceler-
ation in Fig 5, which is the change in angular velocity.
We can see that the acceleration is strongest in the roll
dimension, varying from 6 rad/s2 to -8 rad/s2. This
wide range may be the result of the type or nature of the
instrument used. For example, the Scissors tool may be
easier to manipulate than the Graspers tool, resulting in
different angular velocity.

To illustrate the process of risk assessment, we choose
several boundary values in Tables I to IV. In a real
application, those boundaries should be configurable and
chosen based on the situation. For example, we estimate
the risk level due to average linear speed (ALS) according
to Table I. If the ALS is less than 30 mm/s the risk is low,
if it is in the range 30 to 50 mm/s the risk is medium,
and if it is greater than 50 mm/s the risk is high.

TABLE I: The risk level with respect to Average Linear
Speed

ALS [mm/s] Risk Level
< 30 Low

[30, 50] Medium
> 50 High

Tables II, III, IV list the risk levels for other measured
components. Note that the units for the features are
different (mm/s, rad/s, rad/s, rad/s2) but they are
ignored in the supervised learning training process.

TABLE II: The risk level concerning Average Angular
Speed

AAS [rad/s] Risk Level
<0.1 Low

[0.1, 0.2] Medium
> 0.2 High
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TABLE III: The risk level concerning Angular Velocity

AV [rad/s] Risk Level
< |0.15| Low

[|0.15|, |0.17|] Medium
> |0.17| High

TABLE IV: The risk level with respect to Angular Ac-
celeration

AA [rad/s2] Risk Level
< |2| Low

[|2|, |6|] Medium
> |6| High

Combining risk values of yaw, pitch and roll for AV
and AA from tables III, IV we create a training data set
for the supervised ML model as shown in Listing 1.

In addition to the six input data columns, we add
a seventh (output) column for the risk class. The risk
class can be low, medium, high, or very-high. The class
is determined by assigning numerical values to each risk
attribute, 0 for low, 1 for medium, and 2 for high, and then
summing up these values. Since we track six attributes,
the maximum possible score is 12. Table V shows the risk
classes assigned to each possible sum of attribute risks.

TABLE V: The risk level assigned to the sum of attribute
risks

Sum of risk values Risk Level
≤ 3 Low
[4, 5] Medium
[6, 7] High
≥ 8 Very High

The file snippet in Listing 1 shows a few examples of
attribute ranges and risk values. This file is formatted as
an ARFF (Attribute-Relation File Format) file, used by
the Weka machine learning software [19]. Because the
file has six input columns, each with three possible risk
levels, the file has 36 = 729 rows to cover all possible
risk scenarios.

For example, the first line below @DATA in the List-
ing 1 states if the angular velocity components AV yaw,
AV pitch, and AV roll are all less than 0.15 rad/s, and
angular acceleration components AA yaw, AA pitch,
AA roll are less than ±2 rad/s2, the overall risk is low.

B. Data Analysis Concerning the Safe Zone

In this process, we do a similar analysis as described
in Section 3-A, but now we include the safe zone. We
detect movements that can be potential violations of the
safe zone. Our safe zone is a virtual 3D cone connecting
the entry point of the surgery with the operation target.
Figure 6 sketches this zone. To illustrate the position of
the tip of the surgical tool, we introduced the condition
that the target site and the surgical entry point are con-
nected by concentric circles of decreasing radius.

Listing 1: ARFF File Snippet
@DATA
l t − 1 / 1 5 , l t − 1 / 1 5 , l t − 1 / 1 5 ,
l t −2 , l t −2 , l t −2 , low
l t − 1 / 1 5 , l t − 1 / 1 5 , l t − 1 / 1 5 ,
l t −2 , l t −2 , 2 −6 , low
. . .
l t − 1 / 1 5 , l t − 1 / 1 5 , l t − 1 / 1 5 ,
gt −6 , 2 −6 , l t −2 , medium
l t − 1 / 1 5 , l t − 1 / 1 5 , l t − 1 / 1 5 ,
gt −6 , 2 −6 , 2 −6 , medium
. . .
l t − 1 / 1 5 , l t − 1 / 1 5 , 1 /1 5 −2 / 17 , gt −6 ,
gt −6 , l t −2 , h igh
l t − 1 / 1 5 , l t − 1 / 1 5 , 1 /1 5 −2 / 17 , gt −6 ,
gt −6 , 2 −6 , h igh
l t − 1 / 1 5 , l t − 1 / 1 5 , 1 /1 5 −2 / 17 , gt −6 ,
gt −6 , gt −6 , very − h igh
. . .

Surgical tool
entry point

Operation target

y

x

z

Fig. 6: Conical Virtual 3D Safe Zone

The process of inserting virtual objects into a real
video stream is described in [20]. The position of the
endoscopic camera and the orientation of the target object
are determined by the position of the attached fiducial
markers.

Surgical tool

y

x

z

Fig. 7: Virtual 3D zone with guidance data and distance
to safe zone boundary indication
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Figure 7 shows the safe zone with additional guidance
data to indicate the distance ∆ from the tip of the surgical
tool (xt, yt, zt) to the closest point on the surface of the
safe zone (xs, ys, zs).√

(xt − xs)2 + (yt − ys)2 + (zt − zs)2 = ∆ (1)

Similar to before, the risk level is a combination of
ALS, AAS, AV, and AA data, but now we have one more
component: the shortest distance between the surgical tool
and the safe zone ∆

(ALS,AAS,AV ,AA, ∆) (2)

Using these five features and the total risk level
computed from Table V, we can construct a training
dataset similar to that found in Listing 1 for this case.

Table VI shows the risk level with respect to different
values of ∆. As long as the distance between the tip of
the surgical tool and the safe zone is greater than 4mm,
the procedure is deemed safe or low risk. If the distance is
between 3mm and 4mm, the risk is medium. If the surgical
tool is even closer to the surface of the safe zone, the risk
level is higher.

∆ [mm] Risk Level
> 4 Low
[3, 4] Medium
[1.5, 3] High
[1.1, 1.5] Severe
≤ 1.1 Critical

A. ML Models
We now create supervised classifiers, machine learn-

ing models to classify risk using the Waikato Environment
for Knowledge Analysis (Weka) machine learning and
data analysis experimental software developed at the
University of Waikato, New Zealand [19].

We created two models, one without considering the
safe zone and the other considering it. The model that
does not consider the safe zone uses the ARFF file
described in 3-A as training data. As stated above, this
file has 729 rows ((3 · 3 · 3)2 = 729) to account for all of
the risk levels in angular velocity and acceleration.

We use a second ARFF file for the model that con-
siders a safe zone. In this model, we assess risk using the
highest risk component (in the x, y, or z axes) of angular
velocity, angular acceleration, average linear speed, and
average angular speed, in addition to the risk level given
by ∆. In this file, there are 405 rows (3 ·3 ·3 ·3 ·5 = 405)
to account for all possible combinations. While we could
look at every component of the input data, the resulting
data file would have 5 · 312 or about 2.66 million rows.
Such a large dataset would take significantly longer to
train.

Both models are relatively small. The first is created
on risk assumptions from tables III and IV, while the
second is created on risk assumptions from tables I- IV
and VI. Note that the values for each of the measured

components are hard coded just to demonstrate the pro-
cess. In the full implementation, these values should be
configurable based on experience and experiment.

B. Data Prepossessing
The risk estimation process is shown in Figure 8.

Before using the ML Model on real data, we need to
preprocess it using the risk level tables we defined earlier.
For the first model, we only use Tables III and IV with
angular velocity and acceleration data.

For the second model, we need additional processing.
This means calculating in real-time the average linear
and angular speeds since the start of the procedure. Then
we take the maximum of the values in the x, y, and z
directions and classify these results according to Tables I
and II. Finally, we compute ∆, the distance from the
safe zone edge, and use Table VI to classify the result.
By selecting only the worst velocity and acceleration
components for this model, we estimate the worst case
risk.

C. Risk Estimation Contingency
We use the PART decision list classifier algorithm to

create our ML classifiers[19], [21]. This algorithm builds
a partial C4.5 decision tree in each iteration and makes
the best leaf into a rule. The algorithm option attributes
are set to default values.

After training, our first ML model, which estimates
risk without taking into account the safe zone, can cor-
rectly classify 559 out of 729 situations or 76.7%. The
confusion matrix generated by the model is shown in
Table VII.

TABLE VII: Confusion matrix - the first ML model

Low Medium High Very-high ← Classified as
13 15 0 0 Low
4 105 30 1 Medium
0 34 176 57 High
0 0 29 265 Very High

Fig. 8: Risk Estimation Process

4.   DATA ANALYSIS EXAMPLE

TABLE VI: Risk level with respect to ∆.
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The number of correctly classified instances is the
sum of diagonal values; all other instances are incorrectly
classified. The precision is defined per class as the pro-
portion of the examples that were correctly predicted as
a particular class among all those that were classified
as that class. When looking at the confusion matrix,
this value is computed by dividing the value on the
diagonal by the sum of values in the same column. For
example, for the very-high risk class, the precision is
265/(265+57+1) or 82.0%. For the high risk class, the
precision is 176/(176+30+29) or 74.9%.

Similarly, recall is defined per class as the proportion
of examples in that class that were correctly classified. In
the confusion matrix, this value is computed by dividing
the value on the diagonal by the sum of values in the
same row. For example, for the very-high risk class, the
recall is 265/(265+29) or 90.1%. For the high risk class,
the precision is 176/(176+57+34) or 73.3%. High values
of recall and precision increase our confidence that the
model can correctly identify the most high-risk scenarios.

The confusion matrix for the second ML model,
which does incorporate information about the safe zone,
is shown in Table VIII. This model correctly classified
385 out of 410 instances or 95.1%. The precision of
the very high- and high-risk cases are 100% and 93.3%
respectively, while the recall of these cases is 85.7% and
93.3% respectively. We also see zero cases in which the
risk classification is two or more levels higher or lower
than the true value. (e.g., there are no instances in which
a very high-risk situation is classified as medium- or
low-risk.)

TABLE VIII: Confusion matrix - the second ML model

Low Medium High Very-high ← Classified as
105 0 0 0 Low
5 80 0 0 Medium
0 10 140 0 High
0 0 10 60 Very High

In this work, we describe an automated process to as-
sess risk by analyzing data collected during laparoscopic
procedures. The input data represent the position of the
tip of the laparoscopic surgical tool during the procedure.
Based on the movement of the tool, we estimate the
quality of the surgical process. We train a supervised ML
model to classify the risk of the process and apply this
method to one surgical procedure that does not consider a
safe zone and one that does. Quantifying the risk enables
us to estimate the surgeon’s skill level and the overall
quality of the endoscopic procedure.

There are three areas for improvement in our work.
The first area concerns performing analysis in real time.
Currently, we analyze previously recorded data. In the
future, we intend to implement real-time analysis to
provide immediate warnings to surgeons if a risky ma-
neuver is detected. When the safe zone is not considered,
implementing risk estimation using our first ML model
is a straightforward process. For the second model, we
anticipate a slight delay in generating warnings due to
the need to calculate the ALS, AAS, and ∆ values. At a
frame rate of approximately 30 to 60 frames per second,

averaging values over 10 frames results in a delay of
approximately 0.165 to 0.33 seconds.

The second area for improvement involves customiz-
ing the ML model to enhance estimation accuracy. One
approach is to develop a customized PART classifier.
Alternatively, selecting other model types—such as the
Multi-layer Perceptron (MLP) classifier—may further im-
prove accuracy.

The third area for improvement involves implementing
an early warning feature. Real-time analysis enables the
prediction of future movements, with some probabilistic
confidence, based on past motion data. This feature allows
for advance warnings to surgeons when risky movements
are detected, enabling them to adjust their actions proac-
tively, such as by reducing their speed.
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