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ABSTRACT1 
 
Chatbots and the technology behind them are widely used in 
many places and in various ways. Retrieval Augmented 
Generation AI framework has gained its popularity by its linking 
of large language model with private dataset. It enables one to 
run AI locally and privately with the most updated information 
and knowledge. In this report, we aim to improve the local private 
chatbot response time by using a cache. From our experimental 
results, the majority of time spent during the query process is in 
the generation of the response. The response time can be 
significantly improved when there is a hit on the cache system 
which enables us to return the response to the user immediately 
without going through the generation step. In this report, we 
focus our efforts on improving the turnaround time of the 
generation step.  The cache is organized into categories which 
can be used for efficient searching. User’s query information 
such as query string, embedding information, and its response are 
recorded and stored in the cache. Experiment results are 
presented and the issues of speed up of request response 
turnaround time is addressed.  
 
Keywords: Chatbot, Cache, Embeddings, Similarity Search, 
LLM, RAG 
 
 

1.  INTRODUCTION 
 
Artificial Intelligence (AI) has evolved rapidly due to 
advancements in machine learning and natural language 
processing (NLP). Devlin et al. revolutionized the field of NLP 
by demonstrating how pre-trained transformers can achieve great 
performance in various tasks like answering questions and 
conversational AI [1].  While chatbots have been around for some 
time, they have recently gained recognition after ChatGPT 
became viral in 2022. Brown et al. presented a large-scale 
transformer model GPT-3 that displayed the potential capability 
for creating conversational agents and QA systems [2]. Chatbots 
and the technology behind them are widely used in many places 
and in various ways. For example, in the hospitality industry, 
Athikkal and Jenq implemented a hospitality voice chatbot to 
answer various questions related to a hotel application [3]. Wang 
et al., proposes an experiment of counseling hospitality 
employees using conversational AI chatbots [4]. 
 
Large language models (LLM), which are used in Generative AI 
applications, has become increasingly important in many areas as 
it provides natural language processing capabilities, prediction 
analysis, and help in the decision-making process.  LangChain is 
an AI framework that integrates with external tools to form an 
ecosystem by collecting all the required components for creating 

 
1 I want to express my sincere gratitude to JSCI Editorial board for accepting and publish this 
paper. 

private chatbots quicker. For how LangChain can be used to 
simplify the integration of LLM and applications, see [5]. 
 
Ma et al., discussed how LLMs is used in food science 
application in [6]. In the management field, Aguinis et al., 
showed how AI can help people quickly finish tasks, like human 
resources management [7]. In contract management, Wong et al., 
discussed how to incorporate construction contract domain 
knowledge to enhance language models which help identify 
construction contract risks in order to avoid loss [8].   
 
In the medical fields, Olszewski et al., compared five chatbots 
(Gemini, Microsoft Copilot, PiAI, ChatGPT, ChatSpot) from the 
internet to study the quality of these chatbots in the area of 
cardiovascular health and concluded that chatbots vary in length, 
quality, and readability [9]. In [10], Alkhalaf et al., experiment to 
extract malnutrition information by using the efficacy of zero-
shot prompt engineering and RAG to summarize both structured 
and unstructured data. Hart et al., investigated the use of LLMs 
in the areas of clinical and anatomic pathology [11]. 
 
In this paper, we use caching to improve the performance of local 
private AI chatbots which can be on run on a server. The idea of 
caching has been used for many years to improve the 
performance of computer systems and internet proxy servers. 
Cache memory was first developed in the computer hardware 
design of memory hierarchy. The CPU can access the cache more 
quickly compared to accessing the main memory. The concept 
was used on the paging system design to allow fast retrieval of 
memory page. It is a deterministic mapping process. To access a 
target block of memory such as a page in the main memory, one 
first checks if the target is in the cache memory. The result is 
either a hit or a miss. A similar idea can be extended to proxy 
server design, which stores the web page item and its content on 
the server’s local storage. When there is a request from user’s 
agent, the browser, to a particular web page or item, such as an 
image, the item stored on the proxy server can then be returned 
to the request computer immediately without request to the server 
that owns that item. This significantly reduces the network traffic 
and speeds up the turnaround time. 
 
The main purpose for both examples, computer system memory 
management and proxy server web item management, is to 
shorten the total time of the request and response cycle. Most of 
today’s LLMs use a probabilistic approach instead of a 
deterministic approach. Retrieval Augmented Generation 
(RAG), a term coined by Lewis et al. [12], is an AI framework 
which intends to link the generative AI with specific source of 
domain knowledge or information, such as the most current 
information about a company’s new regulations, or a new school 
policy, or new medical research results, etc.  This information 
may not be available on the Internet but can be embedded into 
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the vector store in order to become available for retrieval 
processing.  The system will then retrieve specific information 
and augment with the LLM to generate a response to the user. As 
stated by [13], "almost any business can turn its technical or 
policy manuals, videos or logs into resources called knowledge 
bases that can enhance LLMs.” 
 
These domain related data or documents are divided into chunks. 
Each chunk will then be tokenized.  Each token is embedded as 
a vector. What is an embedding? An embedding is a mapping of 
a token to a vector of numbers. The vector contains information 
about this token.  To simplify the concept, let’s assume each word 
is a token.  Then a word can be represented as a vector which is 
a collection of numerical values. Thus, the process of text 
embedding translates a word into meaningful numbers. The 
resulting collection of numbers (a vector) are deterministic and 
carry meaning, so the vector (the list of numbers) is also 
deterministic and carry meaning. It uses hundreds or thousands 
of numbers to represent a word like ‘king’. The total number of 
these numbers in the vector which represent a token is called the 
dimension of the LLM. Different models use a different number 
of dimensions to represent the meaning of a token.  
 
These document chunks are then stored into the vector store. 
Users can enter a query and the query is encoded and used to 
search the vector store to retrieve relevant document chunks. For 
example, if our domain is ‘Python Programming Language’ and 
if a user wants to know about a Python list, the query will be 
embedded and some type of similarity checking, like cosine 
similarity, will be performed to find the document chunks with 
the best fit. These document chunks will then be used along with 
the user query be input into the generator (transformer) to 
generate the output. A transformer is a deep learning architecture 
developed by Vaswani et. al. at Google. It is based on the multi-
head attention mechanism, proposed by the famous and 
important paper "Attention Is All You Need"[14]. 
 
According to Bolliboina and Jenq in [15], the private local AI 
chatbots can solve the privacy and security concerns for some 
industries such as the banking industry. But it is slower in 
response time when compared with the public chatbots. In this 
report, we aim to improve the response time by introducing a 
caching component. Unlike most of today’s programming 
languages which are unambiguous, natural languages are 
ambiguous. Often times, its meaning is context sensitive. Not 
only that, one can form various sentences which have the same 
or similar meanings. If we were to implement a caching 
component to speed up the process, we have to answer several 
questions: (a) How do we organize and categorize these queries 
together so we don’t waste our storage while caching and trying 
to achieve the speed up? and (b) How do we map a query to its 
slot and retrieve the answer or possible answers? In this report, 
we try to answer both of these questions. 
 
In section 2, we outline the system design and its implementation. 
Section 3 contains of the experimental results and concluding 
remarks are in section 4. Section 5 lists some of the possibilities 
for future work and improvements. 
 
 

2.  SYSTEM CONFIGURATION AND 
IMPLEMENTATION 

 
In this report, we utilize Python’s ollama and chromadb modules. 
The chroma module is used in our project to create the vector 

embeddings. The ollama module is used for generating responses 
to a user’s query. Figure 1 shows the process of the vector 
embedding. We used the RecursiveCharacterTextSplitter text 
splitter of LangChain to split the pdf files into document chunks. 
This procedure allows us to set chunk size and the overlap size. 
These document chunks are fed into the embedding process 
which will generate a vector embedding and be stored into the 
vector store. A smaller chunk size will increase the total number 
of documents generated, while a larger chunk size decreases the 
number of documents and therefore reduces the number of 
embeddings in our vector collection. Our program uses 
chromadb’s persistent client to create a vector store which will 
store the vector on the local disk so we don’t have to create the 
vector store repeatedly each time we start the program. 
 
 
 
 
 
 
 
 
 
 
 
 
An embedding is a numerical representation of a piece of 
information.  For example, an embedding can be used to 
represent a text, a document, an image, or audio, etc. Thus, it is a 
translation process.  Text embedding translates words into 
meaningful numbers and the resulting numbers (a list) are 
deterministic and it carries meaning, so the vector (the list of 
numbers) is also deterministic and therefore carry meaning. 
Similarly, image embedding translates a picture into a vector 
based on categories, like type of animal, type of flower, color, 
background etc. Once again, it is a list of numbers that represents 
the object under our consideration. Therefore, given a text 
embedding, we can determine what kind of image a sentence 
describes, and the same can be done with audio or video 
embeddings. Embeddings can be used in works such as 
clustering, searching, classification, recommendation, etc. The 
idea behind using embeddings to do the above-mentioned tasks 
is because the process of embedding enables us to find the k-
nearest neighbors in a n-dimensional space using distance 
between embeddings. 
 
Different models have different dimensions n. For example, 
ollama embeddings has 768 dimensions for nomic-embed-text 
model and 4096 dimensions for mistral model. We use the default 
embedding of Chroma. Citing from [16], "[b]y default, Chroma 
uses the Sentence Transformers all-MiniLM-L6-v2 model to 
create embeddings. This embedding model can create sentence 
and document embeddings that can be used for a wide variety of 
tasks. This embedding function runs locally on your machine, 
and may require you download the model files". The all-
MiniLM-L6-v2 generates vector of 384 dimensions.  
 
The distance between two embeddings represents the similarity 
between the two pieces of information.  The most common 
distance function is cosine similarity, which uses the cosine value 
to determine the similarity. A smaller value means increased 
similarity between two vectors. There are several metrics used to 
measure the distance of two embeddings. For example, Chroma 
currently supports three measurements: cosine, Euclidean (L2) 
and Inner Product. The default distance function is L2. Both 

Figure 1. Vector Embedding 
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cosine and L2 are good for text similarity, but because L2 is more 
sensitive to noise, we choose cosine in this report. For 
ChromaDB distance functions, see [17]. 
 
Figure 2 shows the query request and response cycle.  The user 
is prompted to enter a query. This query will be used to call the 
embedding function to embed into its vector format. This query 
embedding is then used to retrieve similar documents based on 
the similarity search function. The number of documents to 
return in this stage can be pre-determined in our program. In our 
experiments, we set 10 as the number of documents to return so 
that we can do other further experiments. After this, we prepare 
data for the generator. We experiment with varying number of 
documents and fine-tune to see which is the best. After the data 
is fed into the generator, the generator uses the user’s query and 
the meaning embedded inside the embeddings to make an 
inference and generate its output to the user. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order for us to generate a response based on the documents 
found, we used ollama as our inference engine to generate the 
response. We import ollama module to create an instance of the 
ollama model to generate query response based on the data from 
the retrieval process described previously.  The pre-trained 
model we used in this report is llama2 and its total size is 3.8G 
when downloading its latest version from the Internet. In our 
experiment, the generator takes the longest time to generate the 
results in the whole request and response process. Most of the 
queries required a few tens of seconds on the local computer to 
generate the response, which was returned to the user without 
using cache. In order to speed up the whole process, we can 
improve the first step to load all embeddings to disk storage 
rather than doing it each time we start the system. The second 
way to improve the performance is to reduce the number of 
documents which are stored to the system. But because reducing 
the number of chunks means increasing the chunk size, that may 
result in the inclusion of too many texts in one chunk and 
therefore introduce noise. The other way to improve the 
performance is to search the similarity faster. This depends on 
the dimensions of the embedding, which depends on the language 
model we are using. In this report we are using mini language 
model, sometimes referred to as small language model (SLM) for 
embedding.  
 

As for the cache, the main purpose of using it is to store some 
objects on a faster device (hardware cache) or data structure 
(software cache) so they can be retrieved quickly when we need 
them. Here, we introduce a software cache data structure to 
improve the performance in the generation stage. The common 
way to organize a cache is to store the most frequently needed 
objects in the cache store so that each time we need them, we can 
always find them. We create different levels in the cache to hold 
various words of users’ query. One possibility is to hold the most 
used term in the top level to search, as it is the term that we will 
most likely encounter.  This method would use a term-based 
approach to categorize the terms to include in each level based 
on how frequently the terms appear on all documents in our 
application, i.e., the terms to be included will be determined by 
the word counts in our source documents (pdf file, csv, files, 
etc.).  
 
Instead of using this approach, we implement a different 
approach in our project. In the current project, we build three 
levels of cache. The first level consists of key terms such as dict, 
class, tuple, string, list, etc.  The second level includes terms such 
as import, def, etc. The third level consists of Python built-in 
function names. The argument behind this arrangement is based 
on our knowledge of organizing a collection of topics, sub-topics, 
etc.  Let’s consider how most books or documents or web sites 
are organized. For example, a book is divided into several 
chapters. Each chapter represents a particular concept and is itself 
a sub domain of the book’s domain, the book name. One can 
continue this process and generate a tree structure as the book’s 
table of content. A website has similar organization. A website 
map usually is a kind of tree structure. Similarly, a company or 
an organization has the similar hierarchical structure. In order for 
us to find information from a book, we use keywords to narrow 
down and find the page number(s) which are related to our 
question. Hopefully, these page numbers that correspond to our 
document chunks can give us good matches.   
 
 

3.  EXPERIMENTAL RESULTS 
 
Figure 3 shows comparisons of sample query running times. The 
first column shows the user queries. The second column shows 
the response time when the three best documents returned from 
the embedding similarity search procedure were used. The use of 
three documents is acceptable since our implementation returns 
more than three documents, along with their distances and 
embeddings, from the retrieval process. The third column 
indicates the response time when two best documents are used as 
data input to the generator.  
 
Since cache are used, when same or similar queries are presented 
to the system, and when there is cache hit, the speed up is 
significant. For example, when questions "What is the difference 
between list and tuple?" and "Can you distinguish tuple from 
list?", are asked, it saved 75,610 microseconds. Because our 
system determined that they are similar questions, it generates a 
cache hit and the response is readily available to return to the 
user.  According to our experiment experiences, the retrieval time 
which required similar search is in the millisecond time range, 
while the generative of answers are in the range of a few tens of 
seconds. Most of the running time spent in the process from 
request to response is the generation time. By using cache, we try 
to avoid that generation process and can significantly save time 
in our particular application.   
 

Figure 2. Query Request and Response Process 
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By using persistent client of chroma to save the embeddings to 
local disk storage, as many researchers have also done to save 
time, it allows users to use the system immediately. 
 
The chunk size will affect the performance in terms of running 
time and quality of responses. When chunk size is too big, some 
information may be truncated by our embedding function, since 
the all-MiniLM-L6-v2 model truncates all input to a maximum 
of 256 tokens. The chunk size and chunk overlap size require fine 
tuning for different use cases.  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.  CONCLUSION REMARKS 
 
We aim to use a cache data structure to speed up the chat between 
human user and an AI chatbot on the local machine. Cache was 
used to store the queries and their corresponding responses. If the 
system believes there is a good match between the new query and 
any of the existing queries in the system cache, the system will 
claim a cache hit and the response is immediately sent back to 
the user by fetching the response from the cache. If there is a 
miss, then the normal procedure will be followed by starting with 
embedding the user query. It will be followed by finding the best 
matches from the system embedding to retrieve the related 
documents. The last stage is to use the predetermined number of 
matched documents and the user query to feed into the generator 
of language model to generate the response. 
 
Although it is unlikely that a user will repeatedly ask the same 
question and thus justify using a cache to speed up the response 
process, it is beneficial if the cache is deployed into an AI proxy 
server of a private company doesn’t want their employees to use 
public AI, but still wants its employees to gain the advantage of 
using AI. 
 
 

5.  FUTURE WORK AND IMPROVEMENT 
 
There are various areas where additional investigation and 
experimentation can be done.  How we categorize terms, 
keywords, and features in our particular application into various 
categories levels and sub levels to ensure the quality and speed 
up of responses is one interesting topic worth further pursuit. 
 
There is much more work needed on improving the quality of the 
responses which are generated by the current system. It depends 
on the quality of the original pdf file, text files, or csv files, etc. 

are used, i.e., the sources of information are very important. For 
example, if we use false information sources, then no matter how 
good our model is, the wrong information will still be output to 
users.  Assuming all the source files are truthful, we still may get 
odd or unexpected answers. Finding ways to ensure that the 
system always generates correct and useful responses is another 
challenging research topic worth considering.  
 
Another aspect of improving response quality is the chunk size 
of our document splitting. As mentioned, bigger chunk sizes 
generate noise and sometimes increasing the size as much as 
possible may even generate wrong information. So, the question 
is: for different application how do we quickly fine-tune the 
chunk size and overlap size to guarantee the best performance in 
terms of time and quality? 
 
As we know, LLMs are neural networks. Usually, one doesn’t 
want to train the network to be overfit or underfit. The main 
reason is because we want to ensure that our machine is able to 
handle unknown input. For example, we can use it to predict the 
future of the stock market when an unforeseen stock market 
scenario occurs. If our query to the system is simply to get 
information such as ‘when the homework 1 is due?’, or ‘what are 
the new regulations for customer privacy?’ etc., the answer 
would be very straight forward.  In Chroma DB, one can use the 
meta tag to tag the documents in the vector store and when we 
provide the query, we can use a filter to retrieve the information 
we need. These kinds of queries, which are related to facts, can 
be handled by using the cache efficiently. If we can somehow 
fine-tune the machine in a way that enhances them to remember 
(like overfitting), then the information in the cache can most 
likely be used again without any issues.  
 
The other matter we need to resolve is detecting when queries 
have the same meaning, i.e., the research question is: given two 
queries, output true if they represent the same question and false 
otherwise. If the two queries are equivalent, then the answer 
stored in the cache can be returned to the user immediately. This 
can also help improve the system’s performance.  
 
Lastly, one of the most challenging aspects of is the validation of 
a response.  If a user asks the AI system to verify and validate 
something, can the system do it?  For example, if we ask "Is ['a', 
123, {'45':789}] a Python list?", the system might answer “no”. 
It will analyze and correctly identify 'a' as a valid string, 123 as 
an integer, and {'45':789} as a valid dictionary, but incorrectly 
categorize the whole thing as not a list because it is not mentioned 
in the source files or the chunk that was selected among the k-
nearest neighbors. In an online system, the same query returns a 
“yes”, but modifying the query to "Is ['a', 123, {'45':789] a Python 
list?" will also result in the system answering “yes”, even though 
we can easily observe the syntax error. Thus, it is worth 
considering how to build a validation AI agent. 
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