

Improving performance of Local Chatbot with Caching

John JENQ
Montclair State University
Montclair, NJ 07043, USA

ABSTRACT1

Chatbots and the technology behind them are widely used in
many places and in various ways. Retrieval Augmented
Generation AI framework has gained its popularity by its linking
of large language model with private dataset. It enables one to
run AI locally and privately with the most updated information
and knowledge. In this report, we aim to improve the local private
chatbot response time by using a cache. From our experimental
results, the majority of time spent during the query process is in
the generation of the response. The response time can be
significantly improved when there is a hit on the cache system
which enables us to return the response to the user immediately
without going through the generation step. In this report, we
focus our efforts on improving the turnaround time of the
generation step. The cache is organized into categories which
can be used for efficient searching. User’s query information
such as query string, embedding information, and its response are
recorded and stored in the cache. Experiment results are
presented and the issues of speed up of request response
turnaround time is addressed.

Keywords: Chatbot, Cache, Embeddings, Similarity Search,
LLM, RAG

1. INTRODUCTION

Artificial Intelligence (AI) has evolved rapidly due to
advancements in machine learning and natural language
processing (NLP). Devlin et al. revolutionized the field of NLP
by demonstrating how pre-trained transformers can achieve great
performance in various tasks like answering questions and
conversational AI [1]. While chatbots have been around for some
time, they have recently gained recognition after ChatGPT
became viral in 2022. Brown et al. presented a large-scale
transformer model GPT-3 that displayed the potential capability
for creating conversational agents and QA systems [2]. Chatbots
and the technology behind them are widely used in many places
and in various ways. For example, in the hospitality industry,
Athikkal and Jenq implemented a hospitality voice chatbot to
answer various questions related to a hotel application [3]. Wang
et al., proposes an experiment of counseling hospitality
employees using conversational AI chatbots [4].

Large language models (LLM), which are used in Generative AI
applications, has become increasingly important in many areas as
it provides natural language processing capabilities, prediction
analysis, and help in the decision-making process. LangChain is
an AI framework that integrates with external tools to form an
ecosystem by collecting all the required components for creating

1 I want to express my sincere gratitude to JSCI Editorial board for accepting and publish this
paper.

private chatbots quicker. For how LangChain can be used to
simplify the integration of LLM and applications, see [5].

Ma et al., discussed how LLMs is used in food science
application in [6]. In the management field, Aguinis et al.,
showed how AI can help people quickly finish tasks, like human
resources management [7]. In contract management, Wong et al.,
discussed how to incorporate construction contract domain
knowledge to enhance language models which help identify
construction contract risks in order to avoid loss [8].

In the medical fields, Olszewski et al., compared five chatbots
(Gemini, Microsoft Copilot, PiAI, ChatGPT, ChatSpot) from the
internet to study the quality of these chatbots in the area of
cardiovascular health and concluded that chatbots vary in length,
quality, and readability [9]. In [10], Alkhalaf et al., experiment to
extract malnutrition information by using the efficacy of zero-
shot prompt engineering and RAG to summarize both structured
and unstructured data. Hart et al., investigated the use of LLMs
in the areas of clinical and anatomic pathology [11].

In this paper, we use caching to improve the performance of local
private AI chatbots which can be on run on a server. The idea of
caching has been used for many years to improve the
performance of computer systems and internet proxy servers.
Cache memory was first developed in the computer hardware
design of memory hierarchy. The CPU can access the cache more
quickly compared to accessing the main memory. The concept
was used on the paging system design to allow fast retrieval of
memory page. It is a deterministic mapping process. To access a
target block of memory such as a page in the main memory, one
first checks if the target is in the cache memory. The result is
either a hit or a miss. A similar idea can be extended to proxy
server design, which stores the web page item and its content on
the server’s local storage. When there is a request from user’s
agent, the browser, to a particular web page or item, such as an
image, the item stored on the proxy server can then be returned
to the request computer immediately without request to the server
that owns that item. This significantly reduces the network traffic
and speeds up the turnaround time.

The main purpose for both examples, computer system memory
management and proxy server web item management, is to
shorten the total time of the request and response cycle. Most of
today’s LLMs use a probabilistic approach instead of a
deterministic approach. Retrieval Augmented Generation
(RAG), a term coined by Lewis et al. [12], is an AI framework
which intends to link the generative AI with specific source of
domain knowledge or information, such as the most current
information about a company’s new regulations, or a new school
policy, or new medical research results, etc. This information
may not be available on the Internet but can be embedded into

96 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 ISSN: 1690-4524

https://doi.org/10.54808/JSCI.22.05.96
Journal of Systemics, Cybernetics and Informatics (2024) 22(5), 96-100

the vector store in order to become available for retrieval
processing. The system will then retrieve specific information
and augment with the LLM to generate a response to the user. As
stated by [13], "almost any business can turn its technical or
policy manuals, videos or logs into resources called knowledge
bases that can enhance LLMs.”

These domain related data or documents are divided into chunks.
Each chunk will then be tokenized. Each token is embedded as
a vector. What is an embedding? An embedding is a mapping of
a token to a vector of numbers. The vector contains information
about this token. To simplify the concept, let’s assume each word
is a token. Then a word can be represented as a vector which is
a collection of numerical values. Thus, the process of text
embedding translates a word into meaningful numbers. The
resulting collection of numbers (a vector) are deterministic and
carry meaning, so the vector (the list of numbers) is also
deterministic and carry meaning. It uses hundreds or thousands
of numbers to represent a word like ‘king’. The total number of
these numbers in the vector which represent a token is called the
dimension of the LLM. Different models use a different number
of dimensions to represent the meaning of a token.

These document chunks are then stored into the vector store.
Users can enter a query and the query is encoded and used to
search the vector store to retrieve relevant document chunks. For
example, if our domain is ‘Python Programming Language’ and
if a user wants to know about a Python list, the query will be
embedded and some type of similarity checking, like cosine
similarity, will be performed to find the document chunks with
the best fit. These document chunks will then be used along with
the user query be input into the generator (transformer) to
generate the output. A transformer is a deep learning architecture
developed by Vaswani et. al. at Google. It is based on the multi-
head attention mechanism, proposed by the famous and
important paper "Attention Is All You Need"[14].

According to Bolliboina and Jenq in [15], the private local AI
chatbots can solve the privacy and security concerns for some
industries such as the banking industry. But it is slower in
response time when compared with the public chatbots. In this
report, we aim to improve the response time by introducing a
caching component. Unlike most of today’s programming
languages which are unambiguous, natural languages are
ambiguous. Often times, its meaning is context sensitive. Not
only that, one can form various sentences which have the same
or similar meanings. If we were to implement a caching
component to speed up the process, we have to answer several
questions: (a) How do we organize and categorize these queries
together so we don’t waste our storage while caching and trying
to achieve the speed up? and (b) How do we map a query to its
slot and retrieve the answer or possible answers? In this report,
we try to answer both of these questions.

In section 2, we outline the system design and its implementation.
Section 3 contains of the experimental results and concluding
remarks are in section 4. Section 5 lists some of the possibilities
for future work and improvements.

2. SYSTEM CONFIGURATION AND
IMPLEMENTATION

In this report, we utilize Python’s ollama and chromadb modules.
The chroma module is used in our project to create the vector

embeddings. The ollama module is used for generating responses
to a user’s query. Figure 1 shows the process of the vector
embedding. We used the RecursiveCharacterTextSplitter text
splitter of LangChain to split the pdf files into document chunks.
This procedure allows us to set chunk size and the overlap size.
These document chunks are fed into the embedding process
which will generate a vector embedding and be stored into the
vector store. A smaller chunk size will increase the total number
of documents generated, while a larger chunk size decreases the
number of documents and therefore reduces the number of
embeddings in our vector collection. Our program uses
chromadb’s persistent client to create a vector store which will
store the vector on the local disk so we don’t have to create the
vector store repeatedly each time we start the program.

An embedding is a numerical representation of a piece of
information. For example, an embedding can be used to
represent a text, a document, an image, or audio, etc. Thus, it is a
translation process. Text embedding translates words into
meaningful numbers and the resulting numbers (a list) are
deterministic and it carries meaning, so the vector (the list of
numbers) is also deterministic and therefore carry meaning.
Similarly, image embedding translates a picture into a vector
based on categories, like type of animal, type of flower, color,
background etc. Once again, it is a list of numbers that represents
the object under our consideration. Therefore, given a text
embedding, we can determine what kind of image a sentence
describes, and the same can be done with audio or video
embeddings. Embeddings can be used in works such as
clustering, searching, classification, recommendation, etc. The
idea behind using embeddings to do the above-mentioned tasks
is because the process of embedding enables us to find the k-
nearest neighbors in a n-dimensional space using distance
between embeddings.

Different models have different dimensions n. For example,
ollama embeddings has 768 dimensions for nomic-embed-text
model and 4096 dimensions for mistral model. We use the default
embedding of Chroma. Citing from [16], "[b]y default, Chroma
uses the Sentence Transformers all-MiniLM-L6-v2 model to
create embeddings. This embedding model can create sentence
and document embeddings that can be used for a wide variety of
tasks. This embedding function runs locally on your machine,
and may require you download the model files". The all-
MiniLM-L6-v2 generates vector of 384 dimensions.

The distance between two embeddings represents the similarity
between the two pieces of information. The most common
distance function is cosine similarity, which uses the cosine value
to determine the similarity. A smaller value means increased
similarity between two vectors. There are several metrics used to
measure the distance of two embeddings. For example, Chroma
currently supports three measurements: cosine, Euclidean (L2)
and Inner Product. The default distance function is L2. Both

Figure 1. Vector Embedding

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 97

cosine and L2 are good for text similarity, but because L2 is more
sensitive to noise, we choose cosine in this report. For
ChromaDB distance functions, see [17].

Figure 2 shows the query request and response cycle. The user
is prompted to enter a query. This query will be used to call the
embedding function to embed into its vector format. This query
embedding is then used to retrieve similar documents based on
the similarity search function. The number of documents to
return in this stage can be pre-determined in our program. In our
experiments, we set 10 as the number of documents to return so
that we can do other further experiments. After this, we prepare
data for the generator. We experiment with varying number of
documents and fine-tune to see which is the best. After the data
is fed into the generator, the generator uses the user’s query and
the meaning embedded inside the embeddings to make an
inference and generate its output to the user.

In order for us to generate a response based on the documents
found, we used ollama as our inference engine to generate the
response. We import ollama module to create an instance of the
ollama model to generate query response based on the data from
the retrieval process described previously. The pre-trained
model we used in this report is llama2 and its total size is 3.8G
when downloading its latest version from the Internet. In our
experiment, the generator takes the longest time to generate the
results in the whole request and response process. Most of the
queries required a few tens of seconds on the local computer to
generate the response, which was returned to the user without
using cache. In order to speed up the whole process, we can
improve the first step to load all embeddings to disk storage
rather than doing it each time we start the system. The second
way to improve the performance is to reduce the number of
documents which are stored to the system. But because reducing
the number of chunks means increasing the chunk size, that may
result in the inclusion of too many texts in one chunk and
therefore introduce noise. The other way to improve the
performance is to search the similarity faster. This depends on
the dimensions of the embedding, which depends on the language
model we are using. In this report we are using mini language
model, sometimes referred to as small language model (SLM) for
embedding.

As for the cache, the main purpose of using it is to store some
objects on a faster device (hardware cache) or data structure
(software cache) so they can be retrieved quickly when we need
them. Here, we introduce a software cache data structure to
improve the performance in the generation stage. The common
way to organize a cache is to store the most frequently needed
objects in the cache store so that each time we need them, we can
always find them. We create different levels in the cache to hold
various words of users’ query. One possibility is to hold the most
used term in the top level to search, as it is the term that we will
most likely encounter. This method would use a term-based
approach to categorize the terms to include in each level based
on how frequently the terms appear on all documents in our
application, i.e., the terms to be included will be determined by
the word counts in our source documents (pdf file, csv, files,
etc.).

Instead of using this approach, we implement a different
approach in our project. In the current project, we build three
levels of cache. The first level consists of key terms such as dict,
class, tuple, string, list, etc. The second level includes terms such
as import, def, etc. The third level consists of Python built-in
function names. The argument behind this arrangement is based
on our knowledge of organizing a collection of topics, sub-topics,
etc. Let’s consider how most books or documents or web sites
are organized. For example, a book is divided into several
chapters. Each chapter represents a particular concept and is itself
a sub domain of the book’s domain, the book name. One can
continue this process and generate a tree structure as the book’s
table of content. A website has similar organization. A website
map usually is a kind of tree structure. Similarly, a company or
an organization has the similar hierarchical structure. In order for
us to find information from a book, we use keywords to narrow
down and find the page number(s) which are related to our
question. Hopefully, these page numbers that correspond to our
document chunks can give us good matches.

3. EXPERIMENTAL RESULTS

Figure 3 shows comparisons of sample query running times. The
first column shows the user queries. The second column shows
the response time when the three best documents returned from
the embedding similarity search procedure were used. The use of
three documents is acceptable since our implementation returns
more than three documents, along with their distances and
embeddings, from the retrieval process. The third column
indicates the response time when two best documents are used as
data input to the generator.

Since cache are used, when same or similar queries are presented
to the system, and when there is cache hit, the speed up is
significant. For example, when questions "What is the difference
between list and tuple?" and "Can you distinguish tuple from
list?", are asked, it saved 75,610 microseconds. Because our
system determined that they are similar questions, it generates a
cache hit and the response is readily available to return to the
user. According to our experiment experiences, the retrieval time
which required similar search is in the millisecond time range,
while the generative of answers are in the range of a few tens of
seconds. Most of the running time spent in the process from
request to response is the generation time. By using cache, we try
to avoid that generation process and can significantly save time
in our particular application.

Figure 2. Query Request and Response Process

98 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 ISSN: 1690-4524

By using persistent client of chroma to save the embeddings to
local disk storage, as many researchers have also done to save
time, it allows users to use the system immediately.

The chunk size will affect the performance in terms of running
time and quality of responses. When chunk size is too big, some
information may be truncated by our embedding function, since
the all-MiniLM-L6-v2 model truncates all input to a maximum
of 256 tokens. The chunk size and chunk overlap size require fine
tuning for different use cases.

4. CONCLUSION REMARKS

We aim to use a cache data structure to speed up the chat between
human user and an AI chatbot on the local machine. Cache was
used to store the queries and their corresponding responses. If the
system believes there is a good match between the new query and
any of the existing queries in the system cache, the system will
claim a cache hit and the response is immediately sent back to
the user by fetching the response from the cache. If there is a
miss, then the normal procedure will be followed by starting with
embedding the user query. It will be followed by finding the best
matches from the system embedding to retrieve the related
documents. The last stage is to use the predetermined number of
matched documents and the user query to feed into the generator
of language model to generate the response.

Although it is unlikely that a user will repeatedly ask the same
question and thus justify using a cache to speed up the response
process, it is beneficial if the cache is deployed into an AI proxy
server of a private company doesn’t want their employees to use
public AI, but still wants its employees to gain the advantage of
using AI.

5. FUTURE WORK AND IMPROVEMENT

There are various areas where additional investigation and
experimentation can be done. How we categorize terms,
keywords, and features in our particular application into various
categories levels and sub levels to ensure the quality and speed
up of responses is one interesting topic worth further pursuit.

There is much more work needed on improving the quality of the
responses which are generated by the current system. It depends
on the quality of the original pdf file, text files, or csv files, etc.

are used, i.e., the sources of information are very important. For
example, if we use false information sources, then no matter how
good our model is, the wrong information will still be output to
users. Assuming all the source files are truthful, we still may get
odd or unexpected answers. Finding ways to ensure that the
system always generates correct and useful responses is another
challenging research topic worth considering.

Another aspect of improving response quality is the chunk size
of our document splitting. As mentioned, bigger chunk sizes
generate noise and sometimes increasing the size as much as
possible may even generate wrong information. So, the question
is: for different application how do we quickly fine-tune the
chunk size and overlap size to guarantee the best performance in
terms of time and quality?

As we know, LLMs are neural networks. Usually, one doesn’t
want to train the network to be overfit or underfit. The main
reason is because we want to ensure that our machine is able to
handle unknown input. For example, we can use it to predict the
future of the stock market when an unforeseen stock market
scenario occurs. If our query to the system is simply to get
information such as ‘when the homework 1 is due?’, or ‘what are
the new regulations for customer privacy?’ etc., the answer
would be very straight forward. In Chroma DB, one can use the
meta tag to tag the documents in the vector store and when we
provide the query, we can use a filter to retrieve the information
we need. These kinds of queries, which are related to facts, can
be handled by using the cache efficiently. If we can somehow
fine-tune the machine in a way that enhances them to remember
(like overfitting), then the information in the cache can most
likely be used again without any issues.

The other matter we need to resolve is detecting when queries
have the same meaning, i.e., the research question is: given two
queries, output true if they represent the same question and false
otherwise. If the two queries are equivalent, then the answer
stored in the cache can be returned to the user immediately. This
can also help improve the system’s performance.

Lastly, one of the most challenging aspects of is the validation of
a response. If a user asks the AI system to verify and validate
something, can the system do it? For example, if we ask "Is ['a',
123, {'45':789}] a Python list?", the system might answer “no”.
It will analyze and correctly identify 'a' as a valid string, 123 as
an integer, and {'45':789} as a valid dictionary, but incorrectly
categorize the whole thing as not a list because it is not mentioned
in the source files or the chunk that was selected among the k-
nearest neighbors. In an online system, the same query returns a
“yes”, but modifying the query to "Is ['a', 123, {'45':789] a Python
list?" will also result in the system answering “yes”, even though
we can easily observe the syntax error. Thus, it is worth
considering how to build a validation AI agent.

6. REFERENCES

[1] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018).

"BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding" arXiv preprint
arXiv:1810.04805.

[2] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J.,

Figure 3. Comparison of Response Times

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 99

Winter, C., Radford, A. (2020). "Language Models are Few-
Shot Learners". arXiv preprint arXiv:2005.14165.

[3] Sagina Athikkal and John Jenq, "An Implementation of
Voice Assistant for Hospitality", Signal & Image
Processing: An International Journal (SIPIJ) Vol.13,
No.2/3/4, August 2022

[4] Yao-Chin Wang, Oscar Hengxuan Chi, Hiroaki Saito, Yue
(Darcy) Lu, "Conversational AI chatbots as counselors for
hospitality employees", International Journal of Hospitality
Management 122 (2024) 103861

[5] Janakiram MSV, "A brief guide to LangChain for software
developers", Aug. 28, 2023,
https://www.infoworld.com/article/3705097/a-brief-guide-
to-langchain-for-software-developers.html,

[6] Peihua Ma, Shawn Tsai, Yiyang He , Xiaoxue Jia ,
Dongyang Zhen, Ning Yu, Qin Wang, Jaspreet K.C. Ahuja,
Cheng-I Wei, "Large language models in food science:
Innovations, applications, and future", Trends in Food
Science & Technology, Volume 148, June 2024 104488

[7] J Herman Aguinis, Jose R. Beltran, and Amando Cope,
"How to use generative AI as a human resource
management assistant", Organizational Dynamics,
ORGDYN 53 (2024) 101029

[8] Saika Wong, Chunmo Zheng, Xing Su, Yinqiu Tang,
"Construction contract risk identification based on
knowledge augmented language models", Computers in
Industry 157-158 (2024) 104082

[9] Robert Olszewski, Klaudia Watros, Małgorzata Manczak,
Jakub Owoc, Krzysztof Jeziorski, Jakub Brzezinski,
"Assessing the response quality and readability of chatbots
in cardiovascular health, oncology, and psoriasis: A
comparative study", International Journal of Medical
Informatics, 190 (2024) 105562

[10] Mohammad Alkhalaf, Ping Yu, Mengyang Yin, Chao Deng,
"Applying generative AI with retrieval augmented
generation to summarize and extract key clinical
information from electronic health records", Journal of
Biomedical Informatics, 156 (2024) 104662

[11] Steven N. Hart, Noah G. Hoffman, Peter Gershkovich,
Chancey Christenson, David S.M Clintock, Lauren J.
Miller, Ronald Jackups, Vahid Azimi, Nicholas Spies,
Victor Brodsky, "Organizational preparedness for the use of
large language models in pathology informatics", Journal of
Pathology Informatics, 14 (2023) 100338

[12] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
Sebastian Riedel, Douwe Kiela, "Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks",
https://arxiv.org/pdf/2005.11401

[13] Nvidia, "What is retrieval augmented generation",
https://blogs.nvidia.com/blog/what-is-
retrieval-augmented-
generation/#:~:text=Patrick%20Lewis,%20
lead%20author

[14] A. Vaswani et al., “Attention is all you need,” arXiv.org,
Jun. 12, 2017. https://arxiv.org/abs/1706.03762

[15] Pavan Sai Bolliboina and John Jenq, "Performance
Comparisons of Private AI Chatbot and Public AI Chatbot",
Proceedings World Conference on Smart Trends in
Systems, Security and Sustainability (WorldS4) July 2024

[16] Chroma Embeddings, retrieved Aug. 7, 2024,
https://docs.trychroma.com/guides/embeddings

[17] ChromaDB distance functions, retrieved Aug. 8, 2024,
https://cookbook.chromadb.dev/core/concepts/#embedding
-function

100 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 ISSN: 1690-4524

