Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Published by
The International Institute of Informatics and Cybernetics


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


Quantitative Endosurgery Process Analysis by Machine Learning Method
Bojan Nokovic, Andrew Lambe
(pages: 1-7)

Modelling Student Performance in a Structural Steel Graduate-Based Module: A Comparative Analysis Between K-Nearest Neighbor and Dummy Classifiers
Masengo Ilunga, Omphemetse Zimbili, Phahlani Mampilo, Agarwal Abhishek
(pages: 8-15)

Interoperable Digital Skills for Foreign Languages Education in the COVID-19 Paradigm
Rusudan Makhachashvili, Ivan Semenist, Iryna Vorotnykova
(pages: 16-20)

Education, Training and Informatics Go Hand in Hand in (Foreign) Higher Education Institutions (HEIs) – Case Studies From Live and Online Classrooms
Ekaterini Nikolarea
(pages: 21-29)

Enhancing Pedagogical and Digital Competencies Through Digital Tools: A Proposal for Semi-schooled Language Teaching Programs in Oaxaca, Mexico
José de Jesús Bautista Hernández, Eduardo Bustos Farías, Norma Patricia Maldonado Reynoso
(pages: 30-35)

Railway Track Degradation Modelling Using Finite Element Analysis: A Case Study in South Africa
Ntombela Lunga, Masengo Ilunga
(pages: 36-50)

Continuum of Academic Collaboration: Issues of Inconsistent Terminology in Multilingual Context
Cristo Leon, James Lipuma, Marcos O. Cabobianco, Maria B. Daizo
(pages: 51-62)

Peat Resource Management and Climate Change Mitigation Issues – Case of Latvia
Anita Titova, Natalja Lace
(pages: 63-70)

Using Geospatial Computation Intelligence for Mapping Temporal Evolution of Urban Built-up in Selected Areas of the Ekurhuleni Municipality, South Africa
Jo-Anne Correia, Masengo Ilunga
(pages: 71-80)

Cybernetics and Informatics of Generative AI for Transdisciplinary Communication in Education
Rusudan Makhachashvili, Ivan Semenist
(pages: 81-88)

Navigating Psychological Riptides: How Seafarers Cope and Seek Help for Mental Health Needs
Coleen Abadicio, Stella Louise Arenas, Rosette Renee Hahn, Angel Berry Maleriado, Ramon Miguel Mariano, Rodolfo Antonio Ma. Zabella, Genejane Adarlo
(pages: 89-98)


 

Abstracts

 


ABSTRACT


Inference of Causal Relationships between Biomarkers and Outcomes in High Dimensions

Felix Agakov, Paul Mckeigue, Jon Krohn, Jonathan Flint


We describe a unified computational framework for learning causal dependencies between genotypes, biomarkers, and phenotypic outcomes from large-scale data. In contrast to previous studies, our framework allows for noisy measurements, hidden confounders, missing data, and pleiotropic effects of genotypes on outcomes. The method exploits the use of genotypes as “instrumental variables” to infer causal associations between phenotypic biomarkers and outcomes, without requiring the assumption that genotypic effects are mediated only through the observed biomarkers. The framework builds on sparse linear methods developed in statistics and machine learning and modified here for inferring structures of richer networks with latent variables. Where the biomarkers are gene transcripts, the method can be used for fine mapping of quantitative trait loci (QTLs) detected in genetic linkage studies. To demonstrate our method, we examined effects of gene transcript levels in the liver on plasma HDL cholesterol levels in a sample of 260 mice from a heterogeneous stock.

Full Text