Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Published by
The International Institute of Informatics and Cybernetics


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


Transfer Learning for Facial Emotion Recognition on Small Datasets
Paolo Barile, Clara Bassano, Paolo Piciocchi
(pages: 1-5)

How to Link Educational Purposes and Immersive Video Games Development? An Ontological Approach Proposal
Nathan Aky
(pages: 6-13)

Application of Building Information Modeling (BIM) in the Planning and Construction of a Building
Renata Maria Abrantes Baracho, Luiz Gustavo da Silva Santiago, Antonio Tagore Assumpção Mendoza e Silva, Marcelo Franco Porto
(pages: 14-19)

Transformative, Transdisciplinary, Transcendent Digital Education: Synergy, Sustainability and Calamity
Rusudan Makhachashvili, Ivan Semenist
(pages: 20-27)

New Online Tools for the Data Visualization of Bivalve Molluscs' Production Areas of Veneto Region
Eleonora Franzago, Claudia Casarotto, Matteo Trolese, Marica Toson, Mirko Ruzza, Manuela Dalla Pozza, Grazia Manca, Giuseppe Arcangeli, Nicola Ferrè, Laura Bille
(pages: 28-32)

Geodata Processing Methodology on GIS Platforms When Creating Spatial Development Plans of Territorial Communities: Case of Ukraine
Olena Kopishynska, Yurii Utkin, Ihor Sliusar, Leonid Flehantov, Mykola Somych, Oksana Yakovlieva, Olena Scryl
(pages: 33-40)

D-CIDE: An Interactive Code Learning Program
Lukas Grant, Matthew F. Tennyson, Jason Owen
(pages: 41-46)

Interdisciplinary Digital Skills Development for Educational Communication: Emergency and Ai-Enhanced Digitization
Rusudan Makhachashvili, Ivan Semenist, Ganna Prihodko, Irina Kolegaeva, Olexandra Prykhodchenko, Olena Tupakhina
(pages: 47-51)

Interdisciplinarity in Smart Systems Applied to Rural School Transport in Brazil
Renata Maria Abrantes Baracho, Mozart Joaquim Magalhães Vidigal, Marcelo Franco Porto, Beatriz Couto
(pages: 52-59)

Peculiarities of the Realization of IT Projects for the Implementation of ERP Systems on the Path of Digitalization of Territorial Communities Activities
Olena Kopishynska, Yurii Utkin, Ihor Sliusar, Khanlar Makhmudov, Olena Kalashnyk, Svitlana Moroz, Olena Kyrychenko
(pages: 60-67)


 

Abstracts

 


ABSTRACT


Current State and Modeling of Research Topics in Cybersecurity and Data Science

Tamir Bechor, Bill Jung


Arguably, the two domains closely related to information technology recently gaining the most attention are ‘cybersecurity’ and ‘data science’. Yet, the intersection of both domains often faces the conundrum of discussions intermingled with ill-understood concepts and terminologies. A topic model is desired to illuminate significant concepts and terminologies, straddling in cybersecurity and data science. Also, the hope exists to knowledge-discover under-researched topics and concepts, yet deserving more attention for the intersection crossing both domains. Motivated by these, then retaining most of the already accepted IMCIC (the International Multi-Conference on Complexity, Informatics, and Cybernetics) 2019 conference paper’s content and supplementing it with implicit design activities while conducting the research, this study attempts to take on a challenge to model cybersecurity and data science topics clustered with significant concepts and terminologies, grounded on a textmining approach based on the recent scholarly articles published between 2012 and 2018. As the means to the end of modeling topic clusters, the research is approached with a text-mining technique, comprised of key-phrases extraction, topic modeling, and visualization. The trained LDA Model in the research analyzed and generated significant terms from the text-corpus from 48 articles and found that six latent topic clusters comprised the key terms. Afterwards, the researchers labeled the six topic clusters for future cybersecurity and data science researchers as follows: Advanced/Unseen Attack Detection, Contextual Cybersecurity, Cybersecurity Applied Domain, Data-Driven Adversary, Power System in Cybersecurity, and Vulnerability Management. The subsequent qualitative evaluation of the articles found the LDA Model supplied the six topic clusters in unveiling latent concepts and terminologies in cybersecurity and data science to enlighten both domains. The main contribution of this research is the identification of key concepts in the topic clusters and text-mining key-phrases from the recent scholarly articles focusing on cybersecurity and data science. By undertaking this research, this study aims to advance the fields of cybersecurity and data science. Besides the main contribution, the additional research contributions are as follows: First, the topic modeling approached using text-mining makes the cybersecurity domain unearth the terminologies that make IST (Information Systems and Technology) researchers investigate further. Secondly, using the result of the study’s analysis, IST researchers can decide terms of interest and further investigate the articles that supplied the terms.

Full Text