Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Published by
The International Institute of Informatics and Cybernetics


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


How Does Logical Dynamics Assist Interdisciplinary Education and Research in Addressing Cognitive Challenges?
Mengqin Ning, Jiahong Guo
(pages: 1-6)

Inter-Corrective Meta-Dialogue on Constructive Impact of Trans-disciplinary Communication in Modern Education
Vinod Kumar Verma
(pages: 7-9)

Intergenerational Learning for Older and Younger Employees: What Should Be Done and Should Not?
Gita Aulia Nurani, Ya-Hui Lee
(pages: 10-15)

On the Ontological Notion of Education
Jeremy Horne
(pages: 16-24)

Research-Based Learning in Intergenerational Dialogue and Its Relationship to Education
Sonja Ehret
(pages: 25-29)

Role-Playing in Education: An Experiential Learning Framework for Collaborative Co-design
Cristo Leon, James Lipuma, Sirimuvva Pathikonda, Rafael Arturo Llaca Reyes
(pages: 30-38)

The Emergent Role of Artificial Intelligence as Tool in Conducting Academic Research
Bilquis Ferdousi
(pages: 39-46)

The Impact of Cybernetic Relationships Between Education and Work-Based Learning
Birgit Oberer, Alptekin Erkollar
(pages: 47-51)

The Notions of Education and Research
Nagib Callaos, Jeremy Horne
(pages: 52-62)

Towards Sustainable Legal Education Reform: Interdisciplinary and Transdisciplinary Approaches in Albania's Justice System
Adrian Leka, Brunilda Haxhiu
(pages: 63-67)

Transdisciplinary Research and the Gift Economy
Teresa Henkle Langness
(pages: 68-75)


 

Abstracts

 


ABSTRACT


Intelligent Fault Pattern Recognition of Aerial Photovoltaic Module Images Based on Deep Learning Technique

Xiaoxia Li, Qiang Yang, Wenjun Yan, Zhebo Chen


The rise of photovoltaic industry has raised the difficulty of the operation and maintenance. Nowadays, the growing interest in the application of unmanned aerial vehicles (UAV) in civil monitoring and diagnostic applications has been observed. Such UAV-based inspection system can significantly improve the efficiency of system monitoring and fault detections. This paper presents an intelligent UAV-based inspection system for asset assessment and defect classification for large-scale PV systems. The aerial imagery data of PV modules increase the complexity of the detection by traditional pattern recognition, a novel method based on the deep learning and supervision is proposed, which could solve the low quality and distortion flexibly and reliably. A convolutional neural network (CNN) is adopted to address the defects classification. Extracting features by the pre-trained architecture Vgg16, the suggested solution added a full-connected layer and a SVM decision layer to classify the defects. Such pre-trained learning-based algorithm can meet the demand of the small datasets, and carry out a variety of deep features and condition classification in PV system, which can supervise with significantly promoted efficiency in comparison with the conventional methods. The proposed solution is evaluated through numerical experiments and the result confirms its improved performance.

Full Text