Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.
In this paper, a framework for a simulation approach to develop a formal representation of control and analysis of human-involved computer integrated manufacturing systems (Hi-CIM) is presented. Important properties of a human material handler within manufacturing systems are discussed and human tasks and errors are identified to build a simulation model. Based on the number of locations where a human operator is required to move to complete a task, material handling tasks are classified into two sets which include an on-the-spot task set and an around-the-system task set. For human errors associated with the task sets, a location error set and an orientation error set are defined. These task sets and error types provide a framework for developing a simulation model of a human material handling task-performing process. To represent the model, a colored Petri net model is used because it provides a good graphical and analytical representation of a system. Human tasks and error types are represented using color tokens. A simulation model of the system can be implemented based on the proposed colored Petri Net model.