Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.
Researchers in remote sensing have attempted to increase the accuracy of land cover information extracted from remotely sensed imagery. Factors that influence the supervised and unsupervised classification accuracy are the presence of atmospheric effect and mixed pixel information. A linear mixture simulated model experiment is generated to simulate real world data with known end member spectral sets and class cover proportions (CCP). The CCP were initially generated by a random number generator and normalized to make the sum of the class proportions equal to 1.0 using MATLAB program. Random noise was intentionally added to pixel values using different combinations of noise levels to simulate a real world data set. The atmospheric scattering error is computed for each pixel value for three generated images with SPOT data. Accuracy can either be classified or misclassified. Results portrayed great improvement in classified accuracy, for example, in image 1, misclassified pixels due to atmospheric noise is 41 %. Subsequent to the degradation of atmospheric effect, the misclassified pixels were reduced to 4 %. We can conclude that accuracy of classification can be improved by degradation of atmospheric noise.