Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Published by
The International Institute of Informatics and Cybernetics


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


Utilization of Artificial Intelligence by Students in Interdisciplinary Field of Biomedical Engineering
Shigehiro Hashimoto
(pages: 1-5)

Transdisciplinary Applications of Data Visualization and Data Mining Techniques as Represented for Human Diseases
Richard S. Segall
(pages: 6-15)

Beyond Status Quo: Why is Transdisciplinary Communication Instrumental in Innovation?
James Lipuma, Cristo Leon
(pages: 16-20)

How We Can Locate Validatable Foundations of Life Themes
Jeremy Horne
(pages: 21-32)

Bringing Discipline into Transdisciplinary Communications -The ISO 56000 Family of Innovation Standards-
Rick Fernandez, William Swart
(pages: 33-39)

To AI Is Human: How AI Tools with Their Imperfections Enhance Learning
Martin Cwiakala
(pages: 40-46)

Knowledge, Learning and Transdisciplinary Communication in the Evolution of the Contemporary World
Rita Micarelli, Giorgio Pizziolo
(pages: 47-52)

Human Complexity vs. Machine Linearity: Tug-of-War Between Two Realities Coexisting in Precarious Balance
Paolo Barile, Clara Bassano, Paolo Piciocchi
(pages: 53-62)

A Cybernetic Metric Approach to Course Preparation
Russell Jay Hendel
(pages: 63-70)

The Impact of Artificial Intelligence on Education
John Jenq
(pages: 71-76)

Bridging the Gap: Harnessing the Power of Machine Learning and Big Data for Media Research
Li-jing Arthur Chang
(pages: 77-84)

Image Processing, Computer Vision, Data Visualization, and Data Mining for Transdisciplinary Visual Communication: What Are the Differences and Which Should or Could You Use?
Richard S. Segall
(pages: 85-92)

Identification – The Essence of Education
Jeremy Horne
(pages: 93-99)

The Greek-Roman Theatre in the Mediterranean Area
Maria Rosaria D’acierno Canonici Cammino
(pages: 100-108)

Examination of AI and Conventional Teaching Approaches in Cultivating Critical Thinking Skills in High School Students
Luis Castillo
(pages: 109-112)

Thoughts, Labyrinths, and Torii
Maurício Vieira Kritz
(pages: 113-119)

Can Two Human Intelligences (HIs or Noes) and Two Artificial Intelligences (AIs) Get Involved in Interlinguistic Communication? – A Transdisciplinary Quest
Ekaterini Nikolarea
(pages: 120-128)


 

Abstracts

 


ABSTRACT


Monte Carlo Numerical Models for Nuclear Logging Applications

Fusheng Li, Xiaogang Han


Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons) in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting). Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP) has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models for the development of major nuclear logging tools, including compensated neutron porosity, compensated density, natural gamma ray and a nuclear geo-mechanical tool.

Full Text