Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.
Edge detection techniques have common problems that include poor edge detection in low contrast images, speed of recognition and high computational cost. An efficient solution to the edge detection of objects in low to high contrast images is scale space analysis. However, this approach is time consuming and computationally expensive. These expenses can be marginally reduced if an optimal scale is found in scale space edge detection. This paper presents a new approach to detecting objects within images using noise within the images. The novel idea is based on selecting one optimal scale for the entire image at which scale space edge detection can be applied. The selection of an ideal scale is based on the hypothesis that "the optimal edge detection scale (ideal scale) depends on the noise within an image". This paper aims at providing the experimental evidence on the relationship between the optimal scale and the noise within images.