

D-CIDE: An Interactive Code Learning Program

Lukas GRANT

Matthew F. TENNYSON

Jason OWEN

Computer Science and Information Systems, Murray State University

Murray, KY 42071, U.S.A.

ABSTRACT

This paper introduces D-CIDE (Distributed Classroom

Integrated Development Environment), a tool that is designed to

improve student-teacher interactions in programming classes. D-

CIDE’s main objective is to provide more meaningful

interactions between teachers and students. Its goal is to create a

more seamless and interactive learning environment for everyone

who uses it. D-CIDE is a distributed integrated development

environment (IDE), where the teacher (host) can manage and

interact with the IDEs of all students (clients). It makes use of

server-client interactions to allow live sharing and editing of

code, making it a useful tool for demonstrating coding techniques

and quickly addressing student questions. The front-end was

developed using HTML, CSS, and JavaScript, and provides a

way for the students and teachers to interact with each other. The

back-end is made with JavaScript and NodeJS and handles data

processing and transmission. The effectiveness of D-CIDE was

analyzed through a classroom case study involving a small group

of students. The study measured students' engagement,

enjoyment, and learning outcomes using D-CIDE compared to

traditional teaching methods. Results indicated an increase in

student engagement and satisfaction when D-CIDE was used, as

well as an improvement in students' learning experiences.

Keywords: Computer Science Education, Programming

Curriculum, Distributed IDE, Teaching Tools.

1. INTRODUCTION

A problem many classrooms have, especially in the context of

programming, is that the student-teacher interaction is often

difficult to make seamless throughout the whole class session.

Classes can have many students, which can be overbearing to a

teacher if they are all asking for help at the same time. If every

student needs help, it is going to take a substantial amount of time

for the teacher to aid all of them. This becomes especially

difficult when it comes to programming, due to the difficulty of

the subject and the attention to detail required to solve some

problems. When presented with a programming problem, there

are typically many ways that it can be correctly solved, and even

more ways that it can be incorrectly solved. This can lead to a

student being confused about either why their program is not

working, or why the teacher’s solution is different although their

own solution worked. The main point here is that teaching

programming in the computer science field requires a large

amount of interaction between the teacher and the student. The

amount of time students have with a teacher each week is often

very limited, so there is rarely enough time to give each

individual the amount of time necessary for optimal learning in a

traditional teaching environment.

This paper presents D-CIDE (Distributed Classroom Integrated

Development Environment), which is an open-source tool that

was developed with a goal to improve learning how to program

in the classroom. It is designed to make student-teacher

interaction more seamless, which in turn is intended to make the

classroom learning experience more beneficial and enjoyable. It

links the students’ and the teacher’s devices together over a LAN

(local area network) which is applicable to a classroom setting.

The tool is a Java development environment that links both the

students and the teacher to the same server, and provides them

each with ways to ease the learning process. The students are able

to see what the teacher is typing within their environment, so the

students get to watch any code being written live on their own

devices. This is much like a lecture based around the teacher

displaying their code via projector, but by using D-CIDE, the

students get to watch it up close on their own screen. The teacher

can then create a coding exercise for the students, and proceed to

share it with each of them. The students can then all attempt the

exercise that was created in front of them. The teacher has access

to all the students’ solutions as they are writing them and after

they submit them. Not only does this make interaction quicker

and easier, but it also allows the professor to use student work as

examples for the rest of the class to learn from. This is all possible

to an extent already, but this tool makes the process faster and

seamless, which is important in a limited class time setting.

In the upcoming sections, we will take a deeper look at the

specifics of the design of D-CIDE. In the literature review, we

take a look at already existing research and tools in the field of

technology in education, mostly focusing on programming

education. The next section discusses both its front-end interface,

and its back-end architecture, along with the installation process

of the tool. This section explains the framework of D-CIDE and

highlights its features that are included to enhance the teaching

and learning experience in programming classes. The

methodology is described in the following section. We discuss

how D-CIDE was implemented in a classroom setting and the

approach we used to test its effectiveness. We detail the process

of data collection, including both student surveys and

performance analysis, to assess the tools impact on different

aspects of a classroom environment. Our results and analysis are

then presented. Finally, we conclude the paper and discuss future

work that can be done to further this research.

2. LITERATURE REVIEW

Some tools already exist that are intended to aid the teaching of

programming. One of the more popular online tools used is

Codecademy [1]. This is a tool that has a built-in curriculum and

a large variety of lessons that can be taken by students. It is a very

interactive programming teaching tool that lets students actively

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 4 - YEAR 2024 41

https://doi.org/10.54808/JSCI.22.04.41
Journal of Systemics, Cybernetics and Informatics (2024) 22(4), 41-46

solve programming problems and provides feedback and

explanations on their solutions. While this is a useful tool, it does

not necessarily add any value to a classroom setting, it more so

replaces the classroom. The teacher can decide what lessons the

students can take, but it is still preset lessons that the teacher did

not create. This means there could be topics the teacher wants to

be taught that are not provided by Codecademy. This tool takes

the teaching away from the teacher and puts it into the hands of

this tool. While this can be very beneficial for supplementary

content for the students to delve into, it does not add value to the

active teaching environment.

The effectiveness of using technology in teaching, specifically in

the field of computer science, is well documented. Some tools

already exist that make use of computer technology to improve

the effectiveness of teaching. Studies show that innovative

teaching methods significantly enhance students' learning

outcomes in computer-related subjects [11]. Similarly,

incorporating technology to help bridge learning and teaching

gaps has been proven to be effective, especially in simulation-

based programming education [12]. The broader role of

computer technologies in enriching educational experiences is

also well established [13]. Furthermore, the positive impact of

technology-enhanced interactive strategies on teaching

programming cannot be overstated [14]. These findings help

validate the importance of tools like D-CIDE in the classroom,

which use technology to enhance the teaching and learning of

computer programming.

A tool that also fits into the realm of computer-based tools

designed to enhance learning is LanSchool [2]. This is a tool that

allows teachers to share their screens with all students on the

LAN network while also granting them some other useful control

features. The teacher can also view each student’s screen, block

certain web pages and programs like YouTube and computer

games, instant message with students, and more. This tool does

grant the connection that is desired, but it is a broader-scoped

software that is designed more with a focus on monitoring

students rather than teaching. While the teacher is able to display

a visual representation of their screen onto students’ screens, they

are not able to instantly duplicate all the work they have done

from their screen over to the students’ screens. If the students

want to be able to have the same work that the teacher has, they

must manually type what the teacher has written onto their own

device. Something this tool does grant is that the teacher can

actively look at students’ screens and take control to solve any

issues that the student may be having.

The overall downside of using LanSchool for teaching

programming is that it is not designed specifically for

programming. There are many features of this program that can

be added and improved upon to specifically focus on improving

the teacher-student interactions for programming-related

courses. D-CIDE is designed with programming as the main

focus, allowing teachers to have meaningful feedback provided

to them about what each student has submitted in a much cleaner

and more efficient manner. It also keeps students from having the

issue of making sure they perfectly copy what the teacher is

writing. D-CIDE fixes some issues which makes the process

more seamless.

Tracking students' engagement during lessons is important for

effective learning, especially in a programming context. A

practical approach involves monitoring their latest computer

interactions [3], highlighting the need for real-time engagement

assessment. D-CIDE builds on this concept by enabling teachers

to view each student's work as it happens, ensuring active

participation and correct problem-solving approaches. This

feature not only keeps students on task but also guides their

progress in the right direction. Similarly, engaging students with

instructor solutions or partially solved problems enhances

learning, as shown in studies on interactive programming

exercises [4]. D-CIDE incorporates these strategies, offering a

dynamic environment for multiple teaching methods and

appealing to different student preferences.

The idea of keeping students engaged in the lesson is extremely

important, with numerous studies showing the positive impact of

retained engagement on learning quality [6-10]. Traditional

lectures often have the challenge of maintaining attention while

teaching meaningful content. Here, computer technology, and by

extension D-CIDE, comes into play. This program is designed

specifically for programming education. It provides

opportunities for teachers to incorporate active participation into

their lectures. By doing so, not only is the issue of engagement

taken care of, but students also get to practice their programming

skills, which is an important part of computer science.

The teacher being able to know how each student is performing

on the problem at hand is important. It allows the teacher to

provide help to the students who need it the most. This need is

supported by insights on real-time analytics in interactive

programming assignments [5], showing how this type of

information can streamline the teaching process and make it more

effective. Sometimes students are afraid to ask for help because

they do not want to feel unintelligent. This can detract from their

learning experience. With the teacher having real-time reports

about what the student is working on, it takes that pressure off

the student. With D-CIDE the teacher can easily look through

their student’s solutions and how their solution performed. This

increases the amount of assistance the teacher can provide, while

also letting the students receive help that need it but are too afraid

to ask for it.

A distributed integrated development environment (IDE) is a

platform that enhances the standard IDE concept by including

server-client interactions. Unlike conventional IDEs that focus

solely on assisting programmers in writing code efficiently, a

distributed IDE introduces the element of collaboration and data

sharing across a network. D-CIDE makes use of this concept by

establishing a host (the teacher) who not only manages their own

IDE but also has access to all connected student IDEs. This setup

enables the host to view and edit the contents of each student's

IDE and share resources from their own IDE with the students.

Therefore, D-CIDE not only takes advantage of the usual benefits

of distributed IDEs, such as enhanced collaboration and resource

sharing, but also extends its functionality to facilitate a more

interactive and productive educational environment. This

approach contrasts with typical distributed IDEs by focusing

specifically on the educational context, where studies have

shown that real-time interaction and feedback are crucial for

effective learning [15].

3. PROGRAM DESIGN

D-CIDE is designed with two parts. There is a front-end GUI that

the teacher and the students see and use to interact with the

program and a back-end that handles all the data processing and

transfer. The front end is created with HTML, CSS, and

42 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 4 - YEAR 2024 ISSN: 1690-4524

JavaScript, and the back end is created with JavaScript and

NodeJS runtime.

Front-End

The front end is a website that has 3 different views. There is the

landing page, the host view, and the student view. The landing

page is very simplistic and minimalistic. An input field allows

the users to enter the names that they wish to be identified by. A

“Join” button is for the students to press to indicate to the server

that they are a student. A “Join as Host” button is for the teacher

to press to indicate to the server that they are going to be the host

of the session and be in control.

The page the teachers will land on after hitting the “Join as host”

button is shown in Figure 1. This page has a line of text at the top

of the screen, a large code editor in the center, a console output

right below the editor, a side panel on the right side of the screen

that shows a preview of each student’s screen that is connected

to the session along with their name and a progress indicator

circle, a submit button, a button to toggle sharing, a “reset

statuses” button, and a privacy mode toggle button. All the

buttons are below the console output section. The line of text is

used to indicate whose code is being displayed in the code editor.

The code editor is exactly as the name suggests, it is the place

where the code is written. The console output is simple as well;

it displays the output of the attempt to run the code within the

code editor.

Figure 1. Host view.

The side panel is updated with a representation of each student

active in the session once they join. They are given a small screen

that shows the teacher the code the student currently has in their

code editor, along with the name the student chose displayed

underneath that screen, as well as their own progress indicator

circle. Each of these screens is clickable to allow the teacher to

edit the student’s code. This process will be discussed later. The

submit button causes the client to make a request to the server to

run the code within the code editor. The toggle-sharing button

sends a request to the server to enable or disable code sharing

from the teacher to the students.

The reset statuses button sends a request to the server to change

all the students’ progress variables to “in progress,” which is

represented by the progress indicator being yellow. Finally, the

privacy button simply modifies the HTML and CSS to hide the

side panel with all the students’ screens and names, along with

the line of text above the code editor. The server-side

functionality of all of these features will be explained when the

back-end part of the program is discussed.

The page the students will land on after hitting the “Join” button

is shown in Figure 2. This page is very similar to the page the

teachers will see. The key difference is that the student view does

not have the side panel, the share toggle button, the reset status

button, or the privacy mode toggle button. The functionality from

a client-side perspective is basically identical to the teacher for

the line of text, the code editor, and the console output that is

displayed on the students’ screens.

Figure 2. Student view.

Back-End

The back end of the program has two main sections. One section

is the JavaScript code that handles data processing, page updates,

and server requests. The other section is the Node server which

handles the storage and transfer of the data between the clients

and the host.

The JavaScript code has a large section of code that runs at a one-

second interval. This code handles almost all the functionality of

the program. The short interval makes the updates appear to be

in real-time, however, the interval is balanced to ensure that both

the browser and server can efficiently process the data without

being overwhelmed. Within each loop of the interval, all the code

that the users have written is sent to and stored within the server,

which is then handled in different ways depending on the user

and the state of the program. The three possible states that the

program can be in are “Sharing,” “Not Sharing,” and “Editing.”

For the “Sharing” state to be active, the host must have the “Share

mode” toggled to the on status. In this state, all code that is within

the host’s code editor is automatically pulled from the server into

each student’s code editor. The client is unable to edit the code

while this mode is active, it just copies the host’s code to their

screen. This is useful for providing the students with examples of

code, or incomplete code for them to look at while the teacher is

walking them through it.

For the “Not Sharing” state to be active, the host must have the

“Share mode” toggled to the off status. In this state, the host’s

code is no longer shared to each client’s screen. The clients are

now able to edit the code within their editor and submit the code

to be run. This is useful for letting the students practice with the

content they have just been taught. The teacher can provide

incomplete code while sharing, then stop sharing and let the

students finish the code.

The final state is the “Editing” state. For this state to be active,

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 4 - YEAR 2024 43

the host must click on a student’s miniature screen that they have

in the side panel. How the side panel works will be explained in

a later section. This then sets the program state to “Editing” for

both the host and the student they clicked on. In this state, the

host gets control over the student’s code. The student’s code is

displayed in the host’s code editor, and all changes the host

makes on their device will be reflected on the student’s device as

well. This is useful for helping a student who is struggling with

parts of the code they are working on.

The side panel is an important part of the host’s part of the

program. It is automatically updated with a new miniature screen

and indicator dot for each student who joins. Each mini-screen

holds a small preview of the code the respective student has

written. Below this screen is their name and a small indicator dot.

This dot can be one of three colors: green, yellow, or red. When

the student submits their code, it is sent to the server and run by

the host’s device. If the student has not submitted anything and

is still working on their code, then the indicator will be yellow. If

they have submitted their code and it compiles and does not have

any runtime errors, the indicator will turn green. If they submit

their code and there is either a compilation error or a runtime

error, the indicator will turn red. The indicator will remain this

color until the host hits the “Reset Statuses” button, which will

return all students to the yellow status.

The NodeJS server is how the host and clients communicate with

each other. Within the JavaScript code that handles this server

are multiple route handlers that handle the transmission of data

between the client, host, and server. Examples of some of these

routes are a route that grabs the code that each client has in their

editor, a route that tells the server which client the host is editing,

a route that sends the host’s code to each client, a route that

executes java code, among many others. This server is also the

way the program is connected to each user. When it is running, it

hosts a webpage from the host machine, using the IPv4 address

of that machine. It will be explained in a later section how to get

the program running on a machine. Once it is running, the host

and clients can connect to the page by typing the host’s IPv4

address, followed by the port the host has chosen, followed by

‘main.html.’ An example of what this would look like is

‘192.168.4.172:8080/main.html’ This URL puts the user on the

landing page.

Installation

For this program to work, the host must have NodeJS installed

on their device. This can be acquired from the following URL:

https://nodejs.org/en/download. Once this is installed D-CIDE

can be installed from a GitHub repository. The URL for this

repository is https://github.com/lukasgrant3102/D-CIDE. Once

it is downloaded, it can be placed anywhere on the machine. To

get it to run, the index.js file must be modified to have the

appropriate IP and port. Towards the very bottom of the file, there

are two lines of code that determine these values. There is one

that starts with “let ip = …” and another that starts with “let

PORT = …” These variables must be adjusted to get the server

running properly. The PORT must simply be a port that is open

on your network. The IP must be set to the host device’s IPv4

address. This can be found by going to a command prompt and

typing the command “ipconfig” on Windows and going to the

“Network” settings in system settings and clicking into the

“Properties” section on Mac. Once this is done, there will be a

line that provides the IPv4 address. This IP must be typed into

the IP variable in the index.js file. After all this is done, simply

run the “D-CIDE.bat” file within the folder. This will print a URL

into the console. All users should go to this URL to use the tool.

4. METHODOLOGY

To determine D-CIDE's effectiveness, a small case study was

conducted in a classroom setting with a sample of 13 students in

two class sessions. The study involved half the class using D-

CIDE on alternate days, while the other half used traditional

methods, and assessing student engagement and perception

through quizzes and surveys.

Each student was assigned a random ID number to determine

their usage of D-CIDE. Students with odd ID numbers used the

program on the first day, while those with even numbers used it

on the second. When not using D-CIDE, students utilized

traditional tools or IDEs. The professor integrated D-CIDE into

teaching, using it to demonstrate coding examples relevant to the

day's topic. This approach’s goal was to enhance the instructional

process and keep students engaged in the lesson.

At the end of each session, students completed a quiz comprising

two problems specifically designed around that day’s topic. The

quiz provided insight into the students' understanding of the

material. Additionally, students filled out a survey at the end of

class to measure their attentiveness and overall satisfaction with

the lesson. The survey included additional questions for those

who used D-CIDE, focusing on their experience with the tool.

This data collection was important in being able to analyze the

impact of D-CIDE on the students' learning experience.

5. RESULTS AND ANALYSIS

The questions that were administered to every student each day

consisted of:

1) How much did you enjoy today’s lesson?

2) How well do you think you learned the material from

today’s lesson?

3) How well do you think you paid attention during today’s

lesson?

The students had to respond to these questions with a value of 1

to 5, with 1 meaning “Not at all” and 5 meaning “Very well.”

Table 1 shows the average results for both days combined and

Figure 3 shows a clustered bar chart visualization of the data.

Table 1. Summary of Survey Reponses.

 Not using

D-CIDE

Using

D-CIDE
Difference

How much did you

enjoy today's

lesson?

3.375 4.2 24.44%

How well do you

think you learned

the material from

today's lesson?

3.75 4.5 20.00%

How well do you

think you paid

attention during

today's lesson?

3.25 4 23.08%

44 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 4 - YEAR 2024 ISSN: 1690-4524

As seen from the results, there tends to be an increase in the

lesson’s ratings from the students who used the program. There

were no instances of decreased satisfaction. When looking at the

data for both days, the minimum increase was 20% which is for

the percent change of how well the students thought they learned

the material for that day’s lesson, and the maximum increase was

24.44% which is the percent change of how much the students

enjoyed that day’s lesson. The other question had a 23.08%

increase, which was for how well the students thought they paid

attention to the lesson. This shows that during this experiment,

the students who were using the program felt as if they learned

better, paid attention better, and enjoyed the lesson more

compared to the students who were not using the program.

Figure 3. Clustered bar chart of survey responses.

The students who used the program were also asked about their

experience while using the program. These questions included:

1) How easy was the program to use and understand?

2) What changes, if any, would you make to the program?

3) Please share any additional thoughts you have about the

tool.

When asked how easy the program was to understand, the

students were given a similar rating system to before with 1

meaning the program was very difficult to understand and 5

meaning the program was very easy to understand. The average

for all responses over the two days for this question was 4.7. The

ratings consisted of only 4s and 5s. This means that the students

overall found the program to be very easy to understand and

make use of during their class sessions.

Some of the responses for changes the students suggested

consisted of simple changes such as “Submit button becomes

highlighted when mouse hovers over it (to show it is clickable),”

along with changes that are a bit more complex such as, “If

possible, multiple file support.” The change to the submit button

is a small change but does hold value in making the program

easier to understand. The change to make the program support

multiple files is a very large change, but one that holds a lot of

value in making this program more versatile for the topics it

could be used to teach with.

The responses for the additional thoughts were mostly positive

and had a few suggestions. They included responses such as:

1) “I like it, I think it will be very useful, especially for students

who can't type as fast as now they can actually pay attention

to the lecture instead of focusing on typing everything and

not making mistakes.”

2) “The tool works very well. Kept me engaged in class and I

was really trying on the practice problems. It adds another

level of accountability and almost makes you learn. I hope

other teachers implement a tool like this.”

3) “I think the program is great as a tool to help learning, but I

believe it would work best in partnership with an external

IDE. External IDEs have tools that are unnecessary for this

program, but are still very helpful to use.”

These students seemed to overall enjoy the use of the program

and are feeling the benefits that the program is intended to have.

The suggestion of having a partnership with an external IDE is a

good one. The power of an IDE combined with the concept of

connectivity this program provides would be very beneficial to

this project.

A key point that must be discussed is the existence of bias. The

answers being more favorable towards the tool could be due to

this bias. The fact that the study was performed by professors and

the tool was created by a fellow university student could make

the participants more likely to approve of the tool. Furthermore,

the study’s investigators being present during the experiment

could influence the responses of the students to be more

favorable of the tool as well.

The averages of the students’ scores with and without the tool are

shown in Table 2. This data shows that the use of the tool seems

to increase the scores by a very small percentage (3.03%). The

problem with this data is that there is such a small sample size of

students who were present both days and got to take a quiz both

using the tool and not using the tool (8 students). This is a start

to testing the tool’s effectiveness, but more can be done to further

analyze its impact on teaching.

Table 2. Summary of Quiz Scores.

Score

Using Tool

Score

not using tool

Number of

participants

Day 1 16.125 15 13

Day 2 18 16.8 8

Combined 16.3 15.82 21

When performing a paired t-test on the data of the students who

took the quiz on both day one and day two, meaning they got a

chance to use the tool and not use it, we determined the difference

in scores was statistically significant. The paired t-test resulted in

a t-stat of approximately -3.07 and a p-value of approximately

0.037. Since the p-value was less than the alpha of 0.05, we will

reject the null hypothesis, meaning that there is a statistically

significant difference in the scores between the day one quiz and

the day two quiz.

6. FUTURE WORK

Looking ahead, several enhancements to D-CIDE are possible.

Firstly, expanding its capabilities to include external web hosting

would not only simplify setup but also extend its usefulness to

virtual classrooms. A future study with a larger sample size and

a more defined control group would provide more meaningful

data, allowing for a better evaluation of D-CIDE's impact.

Additionally, programmatic improvements such as enabling

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 4 - YEAR 2024 45

multiple file creation could significantly widen the scope of

concepts that can be taught. Implementing user experience

improvements – like removing the student’s miniature screen

from the host view upon their exit, allowing the host to view a

student’s screen without entering the 'Editing' state, making

buttons responsive to mouse hover, and updating students'

progress indicators more dynamically – could further refine the

tool's applications and user-friendliness.

7. CONCLUSION

In this paper, we have demonstrated how the D-CIDE program

(Distributed Classroom Integrated Development Environment)

can help to streamline the teaching and learning process in

programming education. Utilizing a LAN setup, D-CIDE has

shown its applicability and effectiveness in a classroom setting,

making lessons more engaging and accessible for both students

and teachers. The experiment conducted, despite having a limited

sample size, provided good insights, consistently indicating the

benefits of D-CIDE in improving the educational experience.

The tool, in its current form, stands as a meaningful aid in making

programming education more seamless and interactive.

8. ACKNOWLEDGEMENTS

The authors would like to thank and acknowledge the reviewers

of this paper, Dr. Victor Raj and Mr. Riza Marjadi. Dr. Raj is

Professor of Information Systems and Department Chair of the

CSIS Department at Murray State University. Mr. Marjadi is

Systems Analyst and Adjunct Instructor of Computer Science at

Murray State University.

9. REFERENCES

[1] J. H. Sharp, “Using Codecademy Interactive Lessons as an

Instructional Supplement in a Python Programming Course,”

Information Systems Education Journal, vol. 17, no. 3, pp.

20–28, Jun. 2019. Accessed: Nov. 13, 2023. [Online].

Available: https://isedj.org/2019-17/n3/ISEDJv17n3p20.pdf

[2] B. Landry and A. Yrle, "The Use of LanSchool to Control and

Enhance Management Lectures in Computer Classrooms," in

Proceedings of the Association of Business Information

Systems 2006 Refereed Proceedings, J. Hatcher, Ed.,

Renaissance Oklahoma City Hotel, Oklahoma City,

Oklahoma, Mar. 2006, pp. 101.

[3] J. Edwards, K. Hart, and C. Warren, "A Practical Model of

Student Engagement While Programming," in SIGCSE

2022: Proceedings of the 53rd ACM Technical

Symposium on Computer Science Education - Volume 1,

Feb. 2022, pp. 558–564. doi: 10.1145/3478431.3499325.

[4] T. W. Price, J. J. Williams, J. Solyst, and S. Marwan,

"Engaging Students with Instructor Solutions in Online

Programming Homework," in CHI '20: Proceedings of the

2020 CHI Conference on Human Factors in Computing

Systems, Apr. 2020, pp. 1–7. doi:

10.1145/3313831.3376857.

[5] N. Diana, M. Eagle, J. Stamper, S. Grover, M. Bienkowski,

and S. Basu, "An Instructor Dashboard for Real-Time

Analytics in Interactive Programming Assignments," in

LAK '17: Proceedings of the Seventh International

Learning Analytics & Knowledge Conference, Mar. 2017,

pp. 272–279. doi: 10.1145/3027385.3027441.

[6] O. H. T. Lu, J. C. H. Huang, A. Y. Q. Huang, and S. J. H.

Yang, "Applying Learning Analytics for Improving Students

Engagement and Learning Outcomes in an MOOCs Enabled

Collaborative Programming Course," Interactive Learning

Environments, vol. 25, no. 2, pp. 220-234, 2017. doi:

10.1080/10494820.2016.1278391.

[7] O. Farrell and J. Brunton, "A Balancing Act: A Window into

Online Student Engagement Experiences," International

Journal of Educational Technology in Higher Education,

vol. 17, 25, Apr. 2020. doi: 10.1186/s41239-020-00199-x.

[8] A. Rojas-López, E. G. Rincón-Flores, J. Mena, et al.,

"Engagement in the Course of Programming in Higher

Education Through the Use of Gamification," Universal

Access in the Information Society, vol. 18, pp. 583–597,

Aug. 2019. doi: 10.1007/s10209-019-00680-z.

[9] Q. Hu, Y. Huang and L. Deng, "A framework to evaluate

student engagement of programming course in blend learning

environment," 2021 16th International Conference on

Computer Science & Education (ICCSE), Lancaster,

United Kingdom, 2021, pp. 915-919, doi:

10.1109/ICCSE51940.2021.9569553.

[10] L. A. Schindler, G. J. Burkholder, O. A. Morad, et al.,

"Computer-Based Technology and Student Engagement: A

Critical Review of the Literature," International Journal of

Educational Technology in Higher Education, vol. 14, 25,

Oct. 2017. doi: 10.1186/s41239-017-0063-0.

[11] A. Zhang, C. J. Olelewe, C. T. Orji, N. E. Ibezim, N. H.

Sunday, P. U. Obichukwu, and O. O. Okanazu, "Effects of

Innovative and Traditional Teaching Methods on Technical

College Students’ Achievement in Computer Craft

Practices," SAGE Open, vol. 10, no. 4, 2020. doi:

10.1177/2158244020982986.

[12] M. G. Jamil and S. O. Isiaq, "Teaching Technology with

Technology: Approaches to Bridging Learning and Teaching

Gaps in Simulation-Based Programming Education,"

International Journal of Educational Technology in

Higher Education, vol. 16, 25, Aug. 2019. doi:

10.1186/s41239-019-0159-9.

[13] A. Haleem, M. Javaid, M. A. Qadri, and R. Suman,

"Understanding the Role of Digital Technologies in

Education: A Review," Sustainable Operations and

Computers, vol. 3, pp. 275-285, 2022, ISSN 2666-4127. doi:

10.1016/j.susoc.2022.05.004.

[14] Y. Jiang, Z. Zhao, L. Wang and S. Hu, "Research on the

Influence of Technology-Enhanced Interactive Strategies on

Programming Learning," 2020 15th International

Conference on Computer Science & Education (ICCSE),

Delft, Netherlands, 2020, pp. 693-697, doi:

10.1109/ICCSE49874.2020.9201627.

[15] F. Coulon, A. Auvolat, B. Combemale, Y.-D. Bromberg,

and F. Taïani, "Modular and Distributed IDE," in

Proceedings of the SLE 2020 - 13th ACM SIGPLAN

International Conference on Software Language

Engineering, Nov. 2020, Virtual, United States, pp. 270-

282. doi: 10.1145/3426425.3426947.

46 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 4 - YEAR 2024 ISSN: 1690-4524

	ZA497EM24

