
 
Ty EBSEN 

University of Arkansas Little Rock 

Little Rock, AR 72204 USA 

 
Richard S. SEGALL  

Arkansas State University 

State University, AR 72467 USA 
 

Hyacinthe ABOUDJA 

 Oklahoma City University 

Oklahoma City, OK  73106 USA 
 

Daniel BERLEANT  

University of Arkansas Little Rock 

Little Rock, AR72204 USA 

 

ABSTRACT1 

This report shows that with the most recent advancements 

in Artificial Intelligence (AI) and Natural Language 

Processing (NLP) using generative-pretrained 

transformers, we can develop robust AI applications to 

assist customer service departments with question answer 

systems. This paper addresses the question answering task 

using an OpenAI Application Programming Interface 

(API). This report examines how to create an AI question 

answering application from documents that generated 

correct answers to questions about those documents. We 

used two different approaches to create the question 

answering system. One was to use just the OpenAI API. 

The other was to use the LangChain framework and 

libraries. Both applications did answer questions correctly. 

LangChain used less code with a higher learning curve. 

The OpenAI API used more code and provided more 

detailed answers. 

Keywords: Artificial Intelligence, Chatbot, Machine 

Learning, Natural Language Processing, Python 

Southwest Power Pool (SPP) is a regional transmission 

organization with 112 members and a footprint of 

552,000-square-miles in 17 states It operates more than 

70,000 miles of high-voltage transmission lines in the 

Eastern Interconnection.  SPP also operates a Day-Ahead 

energy market with 324 market participants. SPP hosts 

several APIs which require two-factor authentication to 

access. SPP’s customer service department receives 

numerous requests (many asking the same questions) from 

members requesting assistance with the APIs. Many of the  

 

 

questions are in the documentation that SPP supplies 

members when they participate in SPPs energy market. 

The documentation is also available for public download 

on SPPs website. 

 

This purpose of this project is to build a customer service 

question answering system that members can use to ask 

questions regarding SPPs APIs. The ultimate goal is to 

allow customer service representatives to increase their 

efficiency by avoiding the need to answer the same 

questions repeatedly. 

 

This project was done using an OpenAI API. We 

implemented the task in two different ways to support a 

comparison. We used the OpenAI API directly and also 

used the LangChain framework. The LangChain 

framework used very little code to accomplish this task. 

However, a lot of the process was hidden in the 

background. The OpenAI approach used more code, but 

the answers were noticeably more detailed. 
 

Quality Assurance (QA) is any systematic process of 

determining whether a product or service meets specified 

requirements. This report next looks at some of the related 

work in the QA task area, then discusses the data collection 

process, followed by the approaches taken to implement 

the QA system and a comparison between the two 

approaches. 

A step-by-step tutorial on how to build your own AI 

Chatbot with the ChatGPT API was published by Sha 

(2023a). That article lists a few things to keep in mind 

when creating a chatbot. These include that (i) a chatbot 

can be built on any platform; and therefore (ii) a powerful 

computer is not needed to create a chatbot. Sha (2023a) 

used Python, OpenAI, and Gradio to build a chatbot. 

Gradio is notable as a convenient way to demo machine 

1Acknowledgement is made to Peng-Hung Tsai of 

University of Arkansas at Little Rock (UALR) USA for 

editorial review of final submission. 

1.  BACKGROUND 

2.  RELATED WORK 

https://doi.org/10.54808/JSCI.22.03.38

38                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 22 - NUMBER 3 - YEAR 2024                             ISSN: 1690-4524  

Journal of Systemics, Cybernetics and Informatics (2024) 22(3), 38-46

A Customer Service Chatbot Using Python, Machine  
Learning, and Artificial Intelligence 



learning projects with a web interface. Chatbots, in 

particular, can help convert a larger body of information 

into short, focused, customized extracts (Berleant and 

Berghel, 1994). 

Sha (2023a) provided the following steps to set up the 

development environment for chatbot development. Steps 

1-3 provide instructions for downloading and installing 

Python on your local computer, adding Python.exe to the 

PATH environment variable and checking that the 

installation was successful. The remaining steps are 

summarized individually next. 

Step 4 is to upgrade PIP (Package Installer for Python).  

PIP is installed as part of the normal installation. PIP is the 

Python package manager that allows the user to install 

Python libraries. It is a good idea to upgrade PIP once the 

installation is complete. 

Step 5 is to install the OpenAI and Gradio libraries using 

PIP. OpenAI provides the libraries that are used to access 

OpenAI’s API. The Gradio libraries are used to create a 

web interface. 

Step 6 is to download and install a code editor. The guide 

uses Notepad++, a simple and general purpose editor. 

Step 7 is to obtain an OpenAI API (Application 

Programming Interface) Key. To use the OpenAI API the 

developer must have an API key that is provided by 

OpenAI. There is more than one way to get the API. One 

can check the OpenAI web site for free offerings or, 

alternatively, purchase credits. Sha walks developers 

through the process of getting an API key from OpenAI. 

Step 8 is where Sha (2023a) provides code showing how 

to get a chatbot up and running, using “gpt-3.5-turbo” for 

the model. The developer can save this code and run it with 

Python. The instructions provided give the location of the 

URL for the required page. 

Building the chatbot. Sha (2023b) follows up with further 

instructions. These give a step-by-step guide to building an 

AI chatbot using ChatGPT and constitute a good example 

to how to consume documents that are used to create an AI 

chatbot with a custom knowledge base. 

Step 1: As in Sha (2023a), the author states that a chatbot 

developer can build a chatbot on any platform and that the 

guide is meant for such users. 

Step 2: The author points out that since an AI is being 

trained as part of the process, it is recommended to take 

advantage of a good GPU due to the computational 

demands of the training. 

Step 3: The guide recommends that the data set be in the 

English language for the example used. However, OpenAI 

works well with other popular languages such as French, 

Spanish, German, etc. 

Step 4: As in the earlier guide, the author walks through 

the process of downloading and setting up the 

development environment with Python, PIP, and Gradio.  

Some new libraries are used in this guide. These include 

GPT Index, PyPDF2, PyCryptodone, and LangChain. 

GPTIndex (also known as LlamaIndex) allows connecting 

external data to the LLM (Large Language Model). The 

example in this article uses an older version of GPTIndex. 

PyPDF2 and PyCryptodome are Python libraries that will 

allow using PDF documents as input to the project. 

The Gradio library allows interaction with a Chatbot using 

a web interface. 

Step 5: Downloading and installation of the desired code 

editor. 

Step 6: Walk-through of the process of obtaining an API 

key from OpenAI. 

Step 7: Training and creating the chatbot. This is where 

the chatbot developer begins using their own documents 

for the knowledge base. The “gpt-3.5-turbo” model was 

used because it is cheaper and faster than many other 

models. 

The instructions are to create a local folder called docs 

which will store all the pdf files that will be used. Note that 

text files and CSV files can also be stored. There is also a 

way to add SQL database files and that process is 

explained in another article 

(https://twitter.com/LangChainAI/status/1635304794335

363072). 

The larger the corpus of documents, the longer it takes to 

process them. The amount of time also depends on the 

CPU (Central Processing Unit) and GPU (Graphics 

Processing Unit) resources devoted to the task. 

The Python code for this project is this: 

from gpt_index import  

  SimpleDirectoryReader, 

  GPTListIndex, 

  GPTSimpleVectorIndex,  

  LLMPredictor, PromptHelper 

from langchain.chat_models import 

3.  PROJECT BASICS 

ISSN: 1690-4524                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 22 - NUMBER 3 - YEAR 2024                             39  



  ChatOpenAI 

import gradio as gr 

import sys 

import os 

 

os.environ["OPENAI_API_KEY"]  

  = 'Your API Key' 

 

def construct_index 

  (directory_path): 

    max_input_size = 4096 

    num_outputs = 512 

    max_chunk_overlap = 20 

    chunk_size_limit = 600 

 

  prompt_helper =  

    PromptHelper(max_input_size,  

                 num_outputs, 

                 max_chunk_overlap,  

                 chunk_size_limit 

                 =chunk_size_limit) 

 

  llm_predictor =   

    LLMPredictor 

     (llm=ChatOpenAI 

       (temperature=0.7,  

        model_name="gpt-3.5-turbo",  

        max_tokens=num_outputs)) 

 

  documents =   

    SimpleDirectoryReader 

      (directory_path).load_data() 

 

  index = GPTSimpleVectorIndex 

    (documents,    

     llm_predictor=llm_predictor,  

     prompt_helper=prompt_helper) 

       

  index.save_to_disk('index.json') 

  return index 

 

def chatbot(input_text):  

index =   

GPTSimpleVectorIndex.load_from_disk  

  ('index.json') 

response = index.query 

  (input_text,   

   response_mode="compact") 

return response.response 

 

iface = gr.Interface 

  (fn=chatbot, 

   inputs=gr.components.Textbox 

     (lines=7,  

      label="Enter your text"), 

   outputs="text", 

   title 

      ="Custom-trained AI Chatbot") 

 

index = construct_index("docs") 

iface.launch(share=True) 

This code first produces a file called index.json using the 

user defined construct_index function with all of the files 

in the docs folder/directory. 

PromptHelper is a GPT_index class that deals with Large 

Language Model (LLM) context window token 

limitations. PromptHelper calculates the available context 

size using the context window size of a LLM, reserve 

token space for the prompt template, and the output. 

A Large Language Model (LLM) is a type of Artificial 

Intelligence (AI) algorithm that uses deep learning 

techniques and potentially massively large data sets to 

understand, summarize, generate and predict new content 

(Kerner, 2023). 

The Chatbot function is used to take the question or the 

input text and search the json.index for the answer. The 

function returns the response. The iFace object is used to 

create the Gradio web interface that will accept a prompt 

and return an answer. 

Obtaining an answer to a question. Shapiro (2022) notes 

that “There is a need for answering questions from 

arbitrary volumes of data.” This is a general problem 

statement for which the solution does not need to leverage 

knowledge about the type of document (Ding et al. 2006) 

or understanding a specific domain (Ding et al. 2005). 

Shapiro refers to this as multi-document answering and 

uses the U.S. Supreme Court opinion on Dobbs vs. Jackson 

which is about 450,000 characters long as the data source. 

OpenAI did have an answering API but it has been 

deprecated due to a lack of use. Shapiro’s Multi Document 

Answering code is at 

https://github.com/daveshap/MultiDocumentAnswering. 

The build_index.py script creates an index.json file from 

an input.txt file. The input.txt file contains the Dobbs vs 

Jackson opinion. The build_index.py script splits the data 

into 4000-word chunks. For each chunk an embedding is 

created using the OpenAI 'text-similarity-ada-001' engine. 

One way to think of this is as a vector with the text 

followed by the language representation. All chunks are 

combined with its embedding and written out to the 

index.json file. 

The answer_questions.py script is where the answers to 

our questions are generated. The script first does a vector 

search for the given question and searches for the answer 

in the index.json file. A similarity score is calculated 

which is the dot product of the question vector and the 

vectors that are searched in the index.json file. The results 

are sorted by similarity score in descending order and the 

top 20 are returned.  

40                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 22 - NUMBER 3 - YEAR 2024                             ISSN: 1690-4524  



The top 20 results from the index search are then sent to 

the OpenAI completion API with the same question.  The 

results are then summarized into a final answer. 

Attention. Vaswani (2017) notes that “The self-attention 

mechanism is key to the transformer. The attention 

mechanism allows the model to weigh the importance of 

different elements (or tokens) in the input sequence when 

generating representations. This enables the model to 

focus on relevant parts of the sequence, capturing long-

range dependencies and improving performance on tasks 

that require understanding of context.” (Vaswani, 2017) 

Using HuggingFace. HuggingFace (2023) discussed 

question answering and provides open-source machine 

learning libraries. The question answering course is a step-

by-step guide to using the libraries to fine-tune a model.  

The guide uses the Stanford Question Answering Dataset 

(SQuAD) dataset released by Stanford University. The 

SQuAD dataset is based on questions about Wikipedia 

articles. This is an extractive question-answer guide where 

the answer to the question is extracted from a given 

context. 

The dataset is loaded using the HuggingFace dataset 

library. A function is created to tokenize the questions and 

context, generate the sequence_ids, and locate the start and 

end of the context. The function is then applied to the train 

split of the dataset. The model, train_dataset, and 

validation dataset are used as inputs to the Trainer class in 

the Hugging Face transformers library. The fine-tuned 

model was then pushed to Hugging Face and then used in 

a pipeline to answer the questions. This process produced 

answers that were nearly all reasonable. 

PDF (Portable Document Format) files that contain 

information related to making API calls using two-factor 

authentication to Southwest Power Pools APIs were 

downloaded from spp.org. These documents are available 

publicly on spp.org. The data could potentially be 

collected from the SPP customer service system, but that 

data is not publicly available and permission would have 

to be obtained to use it outside of SPP.   

This project was developed using OpenAI APIs. OpenAI 

is an Artificial Intelligence company that is part non-profit 

and part for profit that was founded in 2015. In 2020 

OpenAI introduced GPT-3 (Generative Pre-trained 

Transformer) a large language model that was trained on 

large datasets from the internet that is aimed at question 

answering. 

We researched different ways of developing this QA 

application, experimenting with using both the OpenAI 

APIs and the LangChain libraries. We developed both 

applications using Python. We developed the LangChain 

application using Google Colaboratory notebook. We 

developed the OpenAI API application locally. It was 

necessary to obtain an OpenAI API key to use in both 

applications. 

The document “two-factor authentication technical 

specifications v1.3 20170908.pdf” was used for this 

project. It is possible to use multiple documents by 

copying them into the “docs” folder of the project. 

LangChain is a framework that is used to build AI 

applications. Although the code is much more condensed 

than the OpenAI version, the LangChain learning curve 

was much steeper. The results using LangChain were just 

as good as the OpenAI approach. This application was 

developed in a Google Colaboratory notebook. There are 

several Python libraries that must be install first: 

langchain, openai, pydf, tiktoken, and chromadb. One of 

the features of LangChain that helped greatly is that it is 

not necessary to do any conversion of the pdf files. The 

chatbot developer can simply set the location of the pdf 

files in the script and it reads each file in the directory, 

splits the files, and generates the embeddings.  

Here is listing of code with comments noted using #: 

#import the OS library used for  

#reading the API key from a local  

#file and setting the required  

#environment variable  

#OPENAI_API_KEY. 

import os 

 

#Chroma is a vector data store that  

#allows us to store our embeddings. 

from langchain.vectorstores  

  import Chroma 

 

#OpenAIEmbeddings is used to create  

#the embedding for the documents as  

#well as the question. 

from langchain.embeddings.openai  

  import OpenAIEmbeddings 

 

#TextSplitter allows us to split 

#our input data into chunks. We  

#have to do this because the OpenAI  

#models have limits to the number 

#of tokens that can be passed to  

#the API.  For exampe the ada-001  

#model the max number of tokens is 

#2,049. 

4.  DATA COLLECTION 

5.  METHODOLOGY 

5.1  LangChain 

ISSN: 1690-4524                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 22 - NUMBER 3 - YEAR 2024                             41  



from langchain.text_splitter  

  import    

    RecursiveCharacterTextSplitter 

 

#This is the LLM that is used from  

#OpenAI. 

from langchain.llms import OpenAI 

 

#This library is used for 

#retrieving the answer 

from langchain.chains  

  import RetrievalQA 

 

#These two libraries are used to  

#read a directory and load all PDF  

#files. 

from langchain.document_loaders  

  import PyPDFLoader 

from langchain.document_loaders  

  import DirectoryLoader 

 

#open file function used to open 

#the file that contains the  

#OpenAI API KEY 

def open_file(filepath): 

  with open(filepath, 'r',  

            encoding='utf-8')  

  as infile:  

    return infile.read() 

 

#Sets the environment variable  

#OPENAI_API_KEY 

os.environ['OPENAI_API_KEY']  

  = open_file('openaiapikey.txt') 

 

#This code loads all pdf files that  

#are in the docs directory 

loader =  

  DirectoryLoader 

    ('./docs/', 

     glob="./*.pdf",      

     loader_cls=PyPDFLoader) 

documents = loader.load() 

 

#splitting the text into 1000 byte 

#chunks. 

text_splitter = 

  RecursiveCharacterTextSplitter 

    (chunk_size=1000,  

     chunk_overlap=200) 

texts =  

  text_splitter.split_documents 

    (documents) 

 

#creates the embeddings and creates  

#a Chroma docsearch object that 

#will be used to retrieve the  

#answer to the question. 

embeddings = OpenAIEmbeddings() 

docsearch =  

  Chroma.from_documents 

    (texts, embeddings) 

qa = RetrievalQA.from_chain_type 

  (llm=OpenAI(),  

   chain_type="stuff",  

   retriever 

     =docsearch.as_retriever()) 

 

query = "What is required for SPP\ 

  two-factor authentication?” 

qa.run(query) 

The OpenAI code it more involved than the LangChain 

approach but it is easier to follow and understand what is 

happening. 

pdf_2_txt.py: This Python script uses the PyPDF2 and OS 

libraries to read all the pdf files in a directory, convert them 

to text, and save them to a file call input_docs.txt.  The 

input_docs.txt will be the input to the create_index.py 

script. 

import PyPDF2 

import os 

pdf_path = 

 '/Users/tyebsen/projects/docs/' 

for filename in os.listdir(pdf_path): 

  if filename.endswith('.pdf'): 

     reader = PyPDF2.PdfReader 

       (os.path.join(pdf_path,  

                     filename)) 

     for i in range(len(reader.pages)): 

       page = reader.pages[i] 

       page = page.extract_text() 

       page = " ".join(page.split()) 

       print(page) 

       file1 = 

         open(r"input_docs.txt","a") 

       file1.writelines(page) 

       file1.close() 

Create_index.py: This Python script reads the 

input_docs.txt file, and breaks the data into 3,000-byte 

chunks. For each chunk, it generates the embedding, 

saving the text and its embedding in a json formatted file 

called index.json. This file is used by the qa.py Python 

script to answer questions about the pdf files. We use 

3,000-byte chunks because it is safely under the model 

prompt limit of 4,000 bytes. 

Import openai 

import json 

import textwrap 

 

def open_file(filepath): 

  with open(filepath, 'r',    

            encoding='utf-8')  

  as infile: return infile.read() 

5.2  OpenAI 

42                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 22 - NUMBER 3 - YEAR 2024                             ISSN: 1690-4524  



 

openai.api_key =  

  open_file('openaiapikey.txt') 

 

def gpt3_embedding 

  (content,  

   Engine 

     ='text-embedding-ada-002'): 

  response =  

    openai.Embedding.create 

      (input=content,engine=engine) 

  vector = # this is a normal list 

  response['data'][0]['embedding']  

  return vector 

 

if __name__ == '__main__': 

  alltext =  

    open_file('input_docs.txt') 

  chunks =  

    textwrap.wrap(alltext, 3000) 

  result = list() 

  for chunk in chunks: 

    embedding=gpt3_embedding 

      (chunk.encode 

        (encoding= 

          'ASCII', 

           errors='ignore' 

        ).decode() 

      ) 

    info =  

      {'content': chunk,  

       'vector': embedding} 

    print(info, '\n\n\n') 

    result.append(info) 

  with open('index.json', 'w')  

  as outfile: 

    json.dump(result, outfile, 

              indent=2) 

qa.py: This Python script is heavily based on Shapiro’s 

multi-document project that scans all the documents with 

the same question and returns the top 20 results. Shapiro 

used a dot product to determine the score. We updated the 

script to use cosine similarity for the score. Cosine 

similarity is what OpenAI recommends. The final answer 

is generated from a detailed summary of the 20 results. 

import openai 

import json 

import numpy as np 

import textwrap 

import re 

from time import time,sleep 

from numpy.linalg import norm 

 

def open_file(filepath): 

    with open(filepath, 'r', 

              encoding='utf-8')  

    as infile: return infile.read() 

 

openai.api_key =  

  open_file('openaiapikey.txt') 

 

def gpt3_embedding 

  (content,  

   engine= 

     'text-embedding-ada-002'): 

  content = content.encode 

    (encoding='ASCII', 

              errors='ignore' 

    ).decode()  

  response = 

    openai.Embedding.create 

      (input=content,engine=engine) 

  vector =   #this is a normal list 

   response['data'][0]['embedding'] 

  return vector 

 

def similarity(v1, v2):   

# return cosine similarity 

  return 

    np.dot(v1,v2)/norm(v1)*norm(v2) 

 

def search_index(text, data, 

                 count=20): 

    vector = gpt3_embedding(text) 

  scores = list() 

  for i in data: 

    score = similarity(vector,  

                       i['vector']) 

    scores.append 

      ({'content': i['content'],  

        'score': score}) 

  ordered = sorted 

    (scores,  

     key=lambda d: d['score'],  

     reverse=True) 

  return ordered[0:count] 

 

def gpt3_completion 

  (prompt,  

   engine='text-davinci-002',  

   temp=0.6, top_p=1.0,  

   tokens=2000, freq_pen=0.25, 

   pres_pen=0.0, stop=['<<END>>']): 

     max_retry = 5 

     retry = 0 

     prompt =  

       prompt.encode 

        (encoding='ASCII', 

         errors='ignore' 

        ).decode() 

     while True: 

       try: 

         response =  

           openai.Completion.create 

             (engine=engine, 

              prompt=prompt, 

              temperature=temp, 

ISSN: 1690-4524                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 22 - NUMBER 3 - YEAR 2024                             43  



              max_tokens=tokens, 

              top_p=top_p, 

              frequency_penalty= 

                freq_pen, 

              presence_penalty= 

                pres_pen, 

              stop=stop 

             ) 

         text = response 

           ['choices'][0]['text'] 

           .strip() 

         text =  

           re.sub('\s+', ' ', text) 

         filename =  

           '%s_gpt3.txt' % time() 

         with open( 

           'gpt3_logs/%s'  

             % filename, 

           'w')  

         as outfile: 

outfile.write('PROMPT:\n\n'  

  + prompt +  

  '\n\n==========\n\nRESPONSE:\n\n'  

  + text) 

         return text 

       except Exception as oops: 

         retry += 1 

         if retry >= max_retry: 

           return "GPT3 error: %s"  

             % oops 

         print 

           ('Error communicating \ 

with OpenAI:',  

            oops) 

         sleep(1) 

 

if __name__ == '__main__': 

  with open('index.json', 'r')  

  as infile: 

    data = json.load(infile) 

  while True: 

    query = input("Enter your \ 

question here: ") 

    results =  

      search_index(query, data) 

    answers = list() 

      #answer the same question  

      #for all returned chunks 

    for result in results: 

      prompt=f"Use the following \ 

passage to give a detailed answer \ 

to the question:\n\QUESTION: \ 

{query}\n\nPASSAGE: \ 

{result['content']}\n\nDETAILED \ 

ANSWER:" 

      answer =  

        gpt3_completion(prompt) 

      answers.append(answer) 

    #summarize the  

    #answers together 

    all_answers =  

      '\n\n'.join(answers) 

    chunks = textwrap.wrap 

      (all_answers, 10000) 

    final = list() 

      for chunk in chunks: 

        prompt =  

f"Write a detailed summary of the \ 

following: {chunk}" 

        summary =  

          gpt3_completion(prompt) 

        final.append(summary) 

      print('\n\n=========\n\n', 

            '\n\n'.join(final)) 

Both approaches generated reasonable answers. However, 

the OpenAI approach generated much more detailed 

answers. The OpenAI approach required much more code, 

but we believe it provides a better understanding of what 

is actually happening with OpenAI. In comparison, the 

LangChain framework hides a lot of what is going on 

behind the scenes. 

We also scored each predicted answer with the actual 

answer from the documents using the cosine similarity 

calculation.  The LangChain answers scored better against 

the actual answers than the OpenAI method. Table 1 shows 

the LangChain results. 

This project shows that, using the latest advances in 

Artificial Intelligence (AI) and Natural Language 

Processing (NLP), a chatbot developer can produce a 

robust QA (Quality Assurance) system that can be used to 

assist customers. OpenAI was selected for use because is 

currently leading in the AI Natural Language Processing 

(NLP) field with generative-pretrained transformer 

models. OpenAI does charge a small fee for the use of their 
Application Programming Interfaces (APIs), but it was 

negligible for this project. 

We also chose the LangChain framework because of its 

ability to consume multiple documents. Although a lot of 

the processing is done behind the scenes, it is a powerful 

set of libraries that can be used to build AI applications 

albeit with a bigger learning curve than the OpenAI API. 

The OpenAI version needs some performance 

enhancements for a production system, as it otherwise can 

take too long to produce an answer. One thing to look at is 

lowering the number of results returned from the 

search_index function from 20. This could however 

possibly reduce the accuracy of the results. Further testing 

would need to be done. Further research could also be done 

6.  RESULTS 

7.  CONCLUSIONS 

44                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 22 - NUMBER 3 - YEAR 2024                             ISSN: 1690-4524  



using vector stores like Chroma rather than a JSON 

(JavaScript Object Notation) formatted file. The 

LangChain version performs much better.  

For a production system, we would probably recommend 

the LangChain version. The code would be easier to 

maintain, the performance better, and using multiple pdf 

files (or any other type of files) is easier since it is only 

necessary to drop them into a folder without having to do 

format conversion or other manipulation. 

We conclude that Southwest Power Pool (SPP) and other 

organizations could benefit from an AI question answering 

chatbot system to assist users with their API questions. 

Additional performance, load, and accuracy testing would 

need to be done prior to production. User testing would 

also need to be done. Security would also be a 

consideration in a project like this, as hackers should not 

be able to use such a service to gain access to internal 

organization systems. 

It is important to note that SPP is a non-profit organization. 

A project that costs less than a certain limit would not 

normally be subject to a cost-based analysis. Also, these 

types of projects would best be discussed in multiple 

working groups made up of SPP members and staff to 

determine the viability of the project, as could be 

recommended for other organizations as well. 

To calculate the “people cost,” the rate of $41.00 was used 

as it is published in the Department of Labor “Employer 

Costs for Employee Compensation – March 2023” report. 

The Open AI cost was priced at 12,000 transactions at 

approximately $0.00700 per transaction (https://gptforwo 

rk.com/tools/openai-chatgpt-api-pricing-calculator). 

Additional research could be done in providing metrics for 

a production QA (Quality Assurance) system. These 

metrics would be used to determine how the QA system is 

performing based on metrics such as conversation length, 

number of conversations, number of unique users, human 

takeover rate, and others. Michelle Cyca describes these 

metrics in the article “Chatbot Analytics 101: Essential 

Metrics to Track” (Cyca, 2022). 

More research could also be done with different OpenAI 

models. This project used the text-embedding-ada-002 

engine for the embeddings and text-divinci-002 for the 

completions. 

Publication of this work was supported in part by the 

National Science Foundation under Award No. OIA-

1946391. The content reflects the views of the authors and 

not necessarily the NSF. 

10. REFERENCES 

[1] Berleant, D. and Berghel, H. (1994). Customizing 

Information: Part 1, Getting what We Need, when We 

Need It. Computer, vol. 27, no. 9, pp. 96–98, 

https://ieeexplore.ieee.org/document/312053. 

[2] Cheng, R. (2021). Question Answering with Pretrained 

Transformers Using PyTorch. Toward Data Science. 

[Online] January 19, 2021. 

https://towardsdatascience.com/. 

[3] Cyca, M. (2022). Chatbot Analytics 101: Essential 

Metrics to Track. https://blog.hootsuite.com/chatbot-

analytics/. [Online] September 21, 2022.  

[4] Ding, J., Hughes, L.M., Berleant, D., Fulmer, A.W., 

Wurtele, E.S. (2006). PubMed Assistant: A Biologist-

Friendly Interface for Enhanced PubMed Search, 

Bioinformatics, vol. 22, issue 3, pp. 378–380, 

https://doi.org/10.1093/bioinformatics/bti821. 

[5] Ding, J., Viswanathan, K., Berleant, D., Hughes, L., 

Wurtele, E.S., Ashlock, D., Dickerson, J.A., Fulmer, 

A., Schnable, P.S. (2005). Using the Biological 

Taxonomy to Access Biological Literature with 

PathBinderH, Bioinformatics, vol. 21, issue 10, pp.  

2560–2562, 

https://doi.org/10.1093/bioinformatics/bti381. 

[6] HuggingFace (2023). Question Answering. Hugging 

Face. [Online] 2023. https://huggingface.com. 

[7] Kerner, S.M. (2023). Large Language Model. 

Retrieved August 6, 2023 from 

https://www.techtarget.com/whatis/definition/large-

language-model-LLM. 

[8] Khanna, C. (2021). Question Answering with a fine-

tuned BERT. Towards Data Science. [Online] May 

15, 2021. https://towardsdatascience.com/. 

[9] Sha, A. (2023a). How to Build Your Own AI Chatbot 

With ChatGPT API: A Step-by-Step Tutorial. 

beebom.com. [Online] June 19, 2023. 

https://beebom.com/how-build-own-ai-chatbot-with-

chatgpt-api/. 

[10] Sha, A. (2023b). How to Train an AI Chatbot With 

Custom Knowledge Base Using ChatGPT API. 

beebom.com. [Online] June 14, 2023. 

https://beebom.com/how-train-ai-chatbot-custom-

knowledge-base-chatgpt-api/. 

[11] Shapiro, D. (2022). Answer complex questions from 

an arbitrarily large set of documents with vector search 

and GPT-3. youtune.com. [Online] June 25, 2022. 

https://www.youtube.com/watch?v=es8e4SEuvV0. 

[12] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., 

Jones, L.. Gomez, A.N., Kaiser, L., Polosukhin, I. 

(2017). Attention Is All You Need. In: NIPS'17: 

Proceedings of 31st International Conference on 

Neural Information Processing Systems. Dec.2021. 

https://proceedings.neurips.cc/paper_files/paper/2017/

file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

8.  FUTURE DIRECTIONS 

9.  ACKNOWLEDGMENT 

ISSN: 1690-4524                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 22 - NUMBER 3 - YEAR 2024                             45  



Table 1: LangChain Results 

 
Question Answer LangChain Answer COSINE Similarity 

Score 

1) What is required 

for SPP two-factor 

authentication? 

In order to authenticate, 

users or applications 

accessing the User 

Interfaces (UIs) and APIs 

must present a valid x509 

certificate and present a 

second authentication factor.  

A valid x509 client 

Certificate Authority (CA) 

that is trusted by SPP and a 

login ID (Identification) and 

password. 

0.849 

2) What is the 

integrated 

marketplace two-

factor authentication? 

In order to authenticate, 

users or applications 

accessing the UIs and APIs 

must present a valid x509 

certificate and present a 

second authentication factor.  

The integrated marketplace 

two-factor authentication 

requires users to present a 

valid x509 certificate and a 

second authentication 

factor, such as a login ID 

and password. 

0.933 

3) What is the format 

of the request header? 

The concatenated token, 

made up of the Request 

Created Timestamp, 

Request Nonce, and       

Hash-based message 

authentication code(HMAC) 

Sha512 Hash, concatenated 

together and separated by 

hyphens.  

 

The request header consists 

of the Request Created 

Timestamp, Request Nonce, 

and HMAC Sha512 Hash, 

concatenated together and 

separated by hyphens. 

0.954 

4) What is the format 

of the token? 

requestCreated + “-“ + 

requestNonce + “-“  

 

The token is a Nonce and 

HMAC Sha512 Hash, 

concatenated together and 

separated by hyphens. 

0.823 

5) What is the format 

of the timestamp? 

yyyy-Mdd’T’HH:mm:ss’Z’ 

where ‘T’ is the literal 

character T and ‘Z’ is the 

literal character Z.  

 

The format of the timestamp 

is yyyy-MM-

dd'T'HH:mm:ss'Z', with 

yyyy being the 4 digit year, 

MM being the 2 digit month 

(01-12), dd being the 2 digit 

day (01-31), HH being the 2 

digit hour (00-23), mm 

being the 2 digit minute 

(00-59), and ss being the 2 

digit second (00-50). 

0.880 

 

 
 

 

 

46                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 22 - NUMBER 3 - YEAR 2024                             ISSN: 1690-4524  


	ZA198JE24

