
Aurel_AI: Automating an Institutional Help Desk
Using an LLM Chatbot

Diego ORDÓÑEZ-CAMACHO

Quito, Ecuador

ABSTRACT

The Aurel_AI research project was born from the need to
implement a virtual help desk for a university, providing
accurate organizational information to both internal and
external clients. The information includes details about
academic programs, regulations, processes, and personnel.
Aurel_AI is part of a broader research program on the use
of AI in academia. Traditional solutions for a help desk,
such as telephone call centers, present quality and
efficiency issues that are difficult to solve. Call center staff
generally lack comprehensive knowledge about the
institution, rely on specific information that is sometimes
outdated, require additional systems for information
retrieval, and experience high turnover rates. This leads to
associated costs and issues related with outdated
information, resulting in inaccurate responses and long
waiting times. Generative artificial intelligence models,
known as Large Language Models (LLMs), offer an
interesting alternative for an automated virtual help desk.
These models can understand even vague and poorly
structured questions and generate reasonably appropriate
answers. However, they are not without flaws, as they tend
to present issues like "hallucinations" when the required
information is not present in their training data. To
minimize this problem, it is crucial to ensure that the model
has precise and comprehensive information, which needs
a specific methodology for information collection,
validation, and updating. Base models require an
adaptation process to be used for specific cases, for which
techniques like Fine-Tuning and Retrieval Augmented
Generation (RAG) exist. Fine-tuning retrains a model’s
weights with new specific information, while RAG uses

both proprietary information—in this case, from the
university—and publicly available internet data. Both
techniques have pros and cons that need to be evaluated to
select the most suitable option. They also demand
appropriate and specialized infrastructure, which is often
expensive. Thus, another challenge is to find a balance
between suitable equipment and reasonable costs. The
final system, from the user’s perspective, must be accurate,
flexible, and adaptable to deliver a satisfactory experience.
As the results show, Aurel_AI represents an advance in the
digitalization of educational services, standing out for its
ability to generate accurate and personalized responses.
However, its current limitations, such as handling
concurrent queries and hallucinations, underscore the need
for adjustments to both infrastructure and data processing
methodology. With strategic improvements, the system
has the potential to consolidate itself as a replicable model
for multiple university digital services.

Keywords: LLM, chatbot, automated help desk, fine-
tuning, RAG.

The Aurel_AI research project represents an innovative and
strategic response to contemporary demands for precise and
timely information within an educational institution. This
project aims to implement a virtual help desk that
transforms how the university interacts with its internal and
external clients, optimizing the delivery of data related to
academic offerings, regulations, administrative processes,
and key contacts for students and collaborators. The
primary objective of this project is the accuracy of the

1. INTRODUCTION

Rafael MELGAREJO-HEREDIA
Facultad Internacional de Innovación PUCE-Icam – Pontificia Universidad Católica del Ecuador, rmelgarejo@puce.edu.ec

ICAM - Institut catholique d'arts et métiers, rafael.melgarejo@icam.fr
Quito, Ecuador

Mohsen ABBASI

Facultad Internacional de Innovación PUCE-Icam – Pontificia Universidad Católica del Ecuador, mabassi@puce.edu.ec
ICAM - Institut catholique d'arts et métiers, mohsen.abbasi@icam.fr

Quito, Ecuador

Lucía GONZÁLEZ-SOLIS
Facultad Internacional de Innovación PUCE-Icam – Pontificia Universidad Católica del Ecuador, algonzalezs@puce.edu.ec

ICAM - Institut catholique d'arts et métiers, lucia.gonzalez@icam.fr
Quito, Ecuador

 Facultad Internacional de Innovación PUCE-Icam – Pontificia Universidad Católica del Ecuador, daordonezc@puce.edu.ec
ICAM - Institut catholique d'arts et métiers, diego.ordonez@icam.fr

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 77

https://doi.org/10.54808/JSCI.22.05.77
Journal of Systemics, Cybernetics and Informatics (2024) 22(5), 77-87

information provided, as any error or outdated information
could undermine users' trust and the service's effectiveness.

Aurel_AI is part of a larger project on the use of artificial
intelligence in the academic field [1], aligning with a global
trend where emerging technologies are transforming higher
education, from teaching and learning processes to
administrative services. In this context, Aurel_AI not only
serves as a technological tool but also as a strategic
component that demonstrates how AI can address complex
problems efficiently, surpassing the limitations of
traditional solutions such as call centers.

Call centers have been a widely used solution for providing
support to users in various organizations, including
academic institutions, corporations, and public services.
However, this model, while functional in certain contexts,
faces multiple challenges that limit its effectiveness,
especially when used as a help desk to address questions
about institutional information or complex processes.
These challenges range from inaccuracies in the
information provided to high operational costs,
highlighting the need to explore more efficient alternatives
adapted to current demands.

Although information access to public data is not a
limitation [2] within an enterprise like a university, one of
the main issues with call centers is the inaccuracy of the
information offered. This occurs because the personnel
operating these platforms often lack comprehensive and up-
to-date knowledge about all aspects of the organization.
The information available to the operators depends largely
on databases or manuals that are often outdated. This lack
of accuracy frustrates users, who expect quick and correct
responses, and can also compromise trust in the institution,
especially if errors persist or recur.

Additionally, the call center model heavily relies on human
factors, which come with both advantages and
disadvantages. On the one hand, human contact can be
beneficial for certain complex interactions that require
empathy or contextual judgment. However, in terms of
efficiency and consistency, this dependency introduces
additional problems. Training personnel is costly and must
be recurrent to ensure that operators are up to date with
changes in processes, regulations, or organizational
services. Even with training, operators can make mistakes
due to time pressure or the repetitive nature of tasks,
ultimately negatively impacting the user experience.

Another significant challenge is the operational cost of call
centers. These costs include salaries, benefits, training,
technological infrastructure, and maintenance.
Furthermore, the need to maintain an adequate number of
operators to cover service hours increases these expenses,
especially if extended support hours are required. For
organizations with limited resources, such as some
universities, these costs can be prohibitive.

Time is also a weakness of call centers. Although they are
designed to provide quick responses, users often face long
waits due to saturated lines or the need to transfer calls
between operators to find someone with the appropriate
knowledge. These delays not only affect user satisfaction
but also create a negative perception of the organization's

responsiveness.

In terms of customer experience, call centers also face
issues related to personalization. Users often receive
generic responses that do not fully address their specific
concerns. This happens because operators are typically
trained to handle a high volume of interactions rather than
to dedicate time to each individual user. This lack of
personalization can be particularly problematic in contexts
where questions may be highly specialized, such as
information about academic programs, enrollment
processes, or specific scholarship requirements.

In contrast, Aurel_AI proposes a solution based on natural
language processing algorithms and machine learning. This
tool would be capable of providing accurate real-time
responses, minimizing errors and reducing operational
costs. Its potential to integrate with other institutional
information systems would ensure that the data provided to
users is always up-to-date and aligned with the university's
internal regulations and dynamics. Furthermore, Aurel_AI
has the advantage of being able to operate 24/7, offering
uninterrupted support and eliminating the time barriers that
have traditionally limited customer service models like call
centers.

The implementation of a system like Aurel_AI would not
only benefit users but also strengthen the university's
institutional image by positioning it as an innovative entity
committed to service excellence. The trust generated by a
reliable information system would positively impact user
experience, encouraging a closer and more efficient
relationship between the institution and the community.

Overall, the objective of this research project is to develop
an automated system functioning as a help desk or chatbot,
providing specific information about the university as
accurately as possible. Specific objectives include building
a methodology for collecting, cleaning, and updating
information for the system; finding the appropriate
combination of model and adaptation technique to deliver
the most accurate responses possible; and developing a
flexible and adaptable system that provides an acceptable
user experience for both the administrative team and end
users.

From the earliest steps taken by Alan Turing in
conceptualizing machines that mimic human thought [3],
cognitive sciences have inspired significant advances in the
creation of systems capable of analyzing, reasoning, and
making decisions [4]. The central goal has been to replicate
and enhance the human brain's ability to handle large
volumes of information efficiently, answering to complex
problems with precise solutions. In this quest, two initial
approaches emerged which, although useful in their
contexts, presented important limitations.

The first approach, based on expert systems, consisted of
building inference machines that operated on a previously
filled knowledge base. These systems functioned like large
libraries of rules and facts, capable of making reasoned
decisions based on the information available. While

2. CONCEPTUAL BACKGROUND

78 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 ISSN: 1690-4524

revolutionary at the time, these systems faced inherent
design problems: their effectiveness depended on the
quality and quantity of manually encoded knowledge,
making them rigid and difficult to scale. Moreover, as the
volume of data grew exponentially, they became unable to
efficiently process information in real-time.

The second approach sought to simplify the available
information, highlighting only the most relevant elements
for decision-making. This method, inspired by human
cognitive strategies for filtering data [5], offered a more
agile solution but at the cost of precision. By prioritizing
certain data over others, there was a risk of overlooking
critical information, which could lead to significant errors
in the results. Additionally, this approach was not suitable
for highly dynamic problems where seemingly irrelevant
details could become crucial over time.

With the advent of modern artificial intelligence models,
especially Large Language Models (LLM) [6], these two
approaches appear to have found a point of convergence.
LLMs, such as Chat GPT, represent a technological
evolution that combines the strengths of both previous
paradigms. These models are not only capable of
processing vast amounts of information in real-time but
also feature advanced contextual understanding
mechanisms, allowing them to identify meaningful patterns
and relationships without losing sight of important details.

LLMs utilize deep learning techniques based on neural
networks. Unlike expert systems, they do not rely on a
predefined set of rules but learn and generalize from large
datasets during training. This allows them to adapt to a wide
variety of contexts and problems without requiring manual
reprogramming. Additionally, by integrating the ability to
identify relevant information within massive datasets, they
overcome the limitations of simplification methods,
reducing the risk of inaccuracy.

Another fundamental advantage of LLMs is their ability to
handle the exponential growth of data, a challenge
traditional approaches could not effectively address. These
models are designed to scale efficiently, taking profit of
advances in computational hardware and optimization
techniques. Their ability to process information in parallel
and contextually enables them to quickly answer complex
questions, generating precise and comprehensive answers
even in scenarios of high uncertainty.

Furthermore, LLMs have proven to be valuable tools not
only for decision-making but also for advanced creative
and cognitive tasks. Their ability to generate natural
language, summarize information, translate languages, and
perform predictive analysis positions them as versatile
solutions across a wide range of fields, from education to
medicine and scientific research.

LLMs represent one of the most significant advances in
modern artificial intelligence, specializing in understanding
and interpreting human language. These models have
revolutionized how we interact with machines, particularly
through applications such as chatbots, virtual assistants,
and content generators. A crucial aspect of LLMs is their
ability to work with generative artificial intelligence
models [7], which can produce coherent and plausible text

based on an initial user-provided input. In this regard,
LLMs demonstrate a remarkable capacity to interpret
questions or text inputs even if they are poorly structured.
This is particularly useful in applications where users may
express their questions informally, such as in customer
service chatbots or interactive educational systems. For
example, an LLM can understand a poorly phrased
question and provide a coherent answer, lowering the entry
barrier for users.

Despite their capabilities, LLMs are not without
limitations. One of the most notable issues is the
phenomenon known as "hallucinations", where the model
generates incorrect or fabricated answers. This typically
occurs when the model lacks sufficient relevant
information in its training data to address a specific
question. For instance, if a user asks about a highly
specialized topic that was not well-represented in the initial
dataset, the model might provide an apparently plausible
response, but one whose content is incorrect.

This problem is exacerbated by the confidence with which
LLMs present their responses. For the average user,
distinguishing between a precise answer and a hallucination
can be challenging, potentially leading to
misunderstandings or decisions based on erroneous
information. This underscores the importance of
implementing validation strategies and human oversight in
critical applications of LLMs, particularly in sectors such
as healthcare, law, and education, where precision is
essential.

The functioning of LLMs is based on a fundamental
principle: predicting the next word or token in a given text
sequence. This process is made possible by massive
training with enormous volumes of text gathered from the
internet and other data sources. The primary goal is for the
models to develop a statistical understanding of how words
and phrases relate to each other in different contexts. Thus,
when a user poses a question or provides an initial text, the
model can generate a continuation that is coherent and
relevant.

The precision and versatility of LLMs largely depend on
their ability to interpret the context of the text they process.
This is where Transformer Models [8] come into play, a
subtype of models that have radically changed the field of
natural language processing.

Transformer Models are a neural network architecture
designed to efficiently and effectively handle sequential
data, such as natural language. Introduced in the paper
"Attention is All You Need" [9], transformers have
revolutionized natural language processing and other areas
of artificial intelligence by overcoming the limitations of
previous architectures, such as recurrent neural networks
(RNNs) [10] and convolutional neural networks (CNNs)
[11], especially in tasks that require understanding complex
and long-term relationships between elements of a
sequence.

The functioning of transformers is based on two key
principles: the attention mechanism and processing
parallelization. Both combine to provide a more efficient
way to model relationships between different parts of a

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 79

sequence. The core of transformers is the Self-Attention
mechanism [12], which allows models to focus on different
parts of the input sequence while processing a particular
element. This mechanism calculates the relative
importance of each word or token concerning the others in
the same sequence, assigning weights that indicate how
they influence one another. To calculate attention, three
main vectors are used: Query, representing the word
currently being processed; Key, representing the reference
words in the sequence; and Value, containing the
contextual information associated with each word.
Attention is measured by calculating the similarity between
the Query and Key vectors, obtaining a score that is used to
weigh the corresponding Values. This process allows each
word in a sequence to dynamically attend to others,
capturing complex contextual relationships. Multi-Head
Attention [13] further enhances this mechanism, enabling
the model to capture different types of relationships
simultaneously, increasing its ability to understand varied
contexts.

Unlike recurrent networks, which process data sequentially
and face scalability challenges, transformers process all
elements of a sequence simultaneously. This approach is
achieved through positional representations that indicate
the relative order of tokens, as transformers lack inherent
sequential structure. The resulting parallelization not only
significantly accelerates training but also enables the
handling of larger datasets, facilitating the creation of large-
scale models such as GPT [14] and BERT [15].

The architecture of transformers includes two main
components: the encoder and the decoder. The encoder
takes an input sequence and generates a contextualized
representation of it, useful for tasks like text classification
or machine translation. The decoder generates an output
based on the representation created by the encoder, being
particularly valuable in generative tasks such as text
creation. Transformers excel in their ability to capture long-
term relationships and process complete sequences in
parallel. These characteristics make them more scalable
and effective than previous architectures.

LLMs are highly versatile and can be adapted to perform a
variety of specific functions through an adaptation process.
In this process, the base model—trained on general data—
is customized using additional datasets designed for
specific use cases. For instance, "chat" or "instruct" models
are specifically designed to maintain fluid conversations
and generate clear answers to user questions. Similarly,
LLMs can be customized for creative tasks, such as writing
in a specific literary style, or for business applications, like
providing specialized answers based on a company’s
internal information. For example, a base model can be
tailored to answer specific questions about products,
internal policies, or operational procedures unique to an
institution. This adjustment allows the model to provide
responses that are not only accurate but also aligned with
the organization’s context and specific needs. This
approach has been used to develop specialized virtual
assistants, content generation tools for marketing, and even
automated technical support systems.

The development of adapters for artificial intelligence
models, particularly LLMs, has advanced significantly,
offering increasingly efficient and practical solutions to
customize these models for specific needs. Currently, there
are two fundamental techniques for this purpose: fine-
tuning [16] and Retrieval Augmented Generation (RAG)
[17]. These strategies allow a base model, previously
trained on large volumes of general data, to be adjusted for
more precise responses to specific tasks or domains.

Fine-tuning, in its purest form, involves retraining all the
weights of the original model by feeding it new
information, enabling it to learn additional relationships
between tokens or words. Technically, this means the
model adjusts the values that define connections between
its layers, modifying its understanding of language and its
ability to generate responses. However, this approach is
highly demanding in terms of computational resources,
requiring significant processing power and memory, as it
involves working with billions of parameters. For this
reason, full fine-tuning is challenging to implement in
environments where access to specialized hardware, such
as high-end graphics processing units (GPUs), is limited.

In response to these limitations, an alternative technique
known as Low Rank Adaptation (LoRA) [18] has emerged,
which significantly simplifies the model adjustment
process. LoRA introduces an additional matrix of weights
superimposed on the original model, and it is this matrix,
rather than the complete model, that is trained. This
approach is notably more efficient because the additional
matrix is relatively small compared to the entire structure
of the base model. Despite its simplicity, LoRA has proven
to be nearly as effective as full fine-tuning in a variety of
applications, making it a viable and attractive option for
adapting models in resource-constrained scenarios.

One of LoRA's main advantages is its ability to reduce
memory demands during the adaptation process. This
feature has been further enhanced with variations such as
Quantized LoRA (QLoRA) [19], which uses quantization
techniques to further decrease hardware requirements
without significantly compromising model performance.
QLoRA is particularly useful for adapting large language
models on relatively common hardware devices,
democratizing access to the customization of advanced
models. This innovation paves the way for its
implementation in academic projects, small businesses, and
other ventures where budgets or infrastructure are limited.

RAG represents an increasingly popular approach. RAG
combines the generative capabilities of LLMs with external
databases that enrich the context of responses. Instead of
retraining the model, this technique allows it to query
additional information in real-time to generate more precise
and relevant results. This avoids the costs and time
associated with fine-tuning or LoRA, as it does not require
directly modifying the model’s weights. However, RAG
presents its own challenges, such as the need to design
highly organized databases and efficient information
retrieval systems.

RAG is a technique that enhances the capabilities of LLMs
by integrating them with external sources of information

80 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 ISSN: 1690-4524

without modifying the base model. Essentially, RAG
improves the quality of generated responses by
constructing enriched prompts that include additional
context relevant to the user's question. This context is
obtained through a prior process of searching and retrieving
information, which uses external sources such as
documents, websites, or specialized databases. The LLM
receives this expanded prompt and processes it to
summarize, structure, and present a coherent and well-
informed response.

The key to RAG lies in its ability to complement the
inherent limitations of LLMs, such as the lack of updated
or specialized information not included in the training data.
Instead of retraining the base model or adapting it through
techniques like fine-tuning, RAG delegates the task of
contextualization to an external infrastructure that gathers
and organizes relevant information. In this way, the base
model acts as a synthesizer of information, transforming
previously retrieved data into a precise and structured
response.

For RAG to function effectively, an infrastructure beyond
the LLM is required. First, it is necessary to have additional
sources of information that can be quickly queried. These
sources may include organizational databases, document
libraries, or even public websites. However, the challenge
lies not only in accessing these sources but also in
identifying and extracting only the information relevant to
the user’s query. To achieve this, vector databases [20] such
as Faiss [21] are used, which efficiently organize and search
information through vector indices.

A vector database is a storage and retrieval system
specifically designed to handle and organize data in the
form of vectors in a multidimensional space. In this context,
vectors are mathematical representations of data, generated
through machine learning techniques or data processing,
encapsulating relevant information about the represented
elements, such as text, images, audio, or video. Unlike
traditional databases, which typically work with structured
data like rows and columns, vector databases are optimized
for search and retrieval operations based on vector
similarities.

The primary purpose of a vector database is to facilitate the
search for similar elements within a dataset using proximity
metrics such as Euclidean distance, cosine similarity, or
Manhattan distance. These metrics measure how close or
related the vector representations of different elements are.
For example, in a system that stores vector representations
of words, words with similar meanings can be searched
based on the proximity of their vectors in multidimensional
space.

The vector representation of data is generated by machine
learning models known as embedding models, which
convert complex data (such as a sentence) into fixed-
dimensional vectors. These vectors preserve semantic and
contextual relationships between data, allowing related
elements to be close to each other in the vector space. This
principle is particularly useful in tasks such as information
retrieval, image analysis, and product recommendation,

where it is essential to compare elements based on their
content or context.

A vector database is organized around indexes that
facilitate the quick search of similar vectors. The vector
index is an optimized data structure that significantly
reduces search time in large datasets. Without these
indexes, finding similar vectors would require calculating
the distances between all stored vectors and the query
vector, which would become computationally expensive as
the amount of data increases.

Vector indexes employ advanced optimization techniques,
such as Approximate Nearest Neighbor (ANN) search
algorithms [22], which quickly find the vectors most like a
query without requiring an exhaustive search. Among the
most well-known implementations of these algorithms are
Faiss (Facebook AI Similarity Search), ScaNN (Scalable
Nearest Neighbor) [23], and Milvus [24], which offer
specialized tools for handling large volumes of vector data
in practical applications.

The typical workflow of using a vector database begins
with creating embeddings of the data to be stored. For
instance, in a text search application, each document or text
fragment is processed by an embedding model that
generates a vector representing its content. These vectors
are stored in the vector database along with an identifier
that links them to the original data. When a user submits a
query, it is also converted into a vector using the same
embedding model. The vector database compares this
query vector with the stored vectors to identify the most
similar ones, returning the corresponding elements.

Vector databases have proven to be particularly useful in
artificial intelligence and machine learning applications.
For example, in recommendation systems, they enable the
comparison of user profiles or product features to suggest
relevant items. In image recognition, they can store vector
representations of images and quickly retrieve those
visually like a query. In natural language processing, they
are used to build systems such as Retrieval Augmented
Generation (RAG), where vector representations of
documents allow the retrieval of relevant information based
on user-generated queries.

However, working with vector databases also presents
technical challenges. One of the main issues is the
dimensionality of the data. High-dimensional vectors,
while expressive, can be costly to store and process, leading
to problems known as the "curse of dimensionality." This
phenomenon implies that, as dimensionality increases, the
distances between vectors become less meaningful,
potentially complicating the accurate identification of
nearest neighbors. To mitigate this problem, techniques
such as dimensionality reduction and optimization of vector
indexes are employed.

Another challenge is scalability, especially in applications
that manage billions of vectors. Implementations like Faiss
address this issue by offering support for distributed
searches and optimization for specialized hardware, such as
GPUs, which allow large volumes of data to be handled
efficiently. Additionally, modern vector databases often
integrate mechanisms for managing real-time data updates,

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 81

ensuring that the system can dynamically adapt to changes
in the stored data.

Vector databases inherit the limitations and biases of the
embedding models that generate the vector representations.
If an embedding model is trained on biased data, searches
conducted in the vector database may perpetuate these
biases, affecting the fairness and objectivity of applications.
Therefore, it is essential to consider both the quality of the
training data and the interpretation of the results.

An embedding model is a type of machine learning model
designed to represent data—such as words, phrases,
documents, or any type of textual or non-textual
information—in a fixed-dimensional mathematical vector
space. In this space, each data element is converted into a
numerical vector, and the semantic relationships between
elements are reflected in the distances or similarities
between their respective vectors. This technique has
revolutionized multiple fields, including natural language
processing, information retrieval, and other domains, by
providing an efficient and effective way to capture complex
and contextual relationships between data.

The underlying concept of an embedding model lies in its
ability to transform input data, which is often categorical or
sequential, into a dense and continuous representation that
captures the essential features of the content. For example,
in the case of words in text, an embedding model like
Word2Vec or GloVe assigns each word a numerical vector
of reduced dimensions, typically ranging from 50 to 300
dimensions [25] [26]. This vector not only represents the
word in isolation but also encapsulates information about
its context, such as its meaning and its relationship to other
words.

The way embedding models are trained varies, but their
common goal is to learn representations that preserve the
semantics of the data. In natural language processing, this
is achieved using methods such as supervised learning,
unsupervised learning, or self-supervised learning. For
instance, in the Word2Vec model, two main techniques are
employed: the CBOW (Continuous Bag of Words) model
[27], which predicts a word based on its surrounding
context, and the Skip-gram model [33], which predicts the
context given a word. Both methods aim to optimize a loss
function that measures the model's ability to capture
contextual relationships in the training data. As the model’s
parameters are fine-tuned, the vectors representing words
begin to organize themselves in the vector space, so that
semantically similar words are positioned closer to each
other.

One of the most powerful properties of embeddings is their
ability to capture complex semantic and syntactic
relationships. For example, in a word vector space trained
with Word2Vec, the relationship between "King" and
"Queen" can be mathematically represented as a vector
similar to that linking "Man" and "Woman." This emergent
property, known as semantic compositionality, enables
embedding models to generalize the knowledge learned to
new contexts, making them extremely useful in tasks such
as machine translation, text classification, and information
retrieval.

Embedding models are not limited to natural language
processing. In information retrieval applications, such as
RAG, embeddings are used to represent documents, text
fragments, or even user queries as vectors. A key example
of this is the use of vector databases, where indexed data is
stored in the form of embeddings. When a user poses a
query, it is also vectorized using the same embedding
model, and the similarities between the query vector and
the stored vectors are calculated to retrieve the most
relevant data.

Embeddings have also evolved to handle more complex
and contextual data. Advanced models like BERT and GPT
generate contextual embeddings, where the vector
representations of a word or phrase vary depending on its
position and meaning in a specific context. This represents
a significant improvement over traditional models, which
assigned a single fixed vector to each word regardless of its
use in different contexts.

In addition to their practical utility, embedding models
present technical and ethical challenges. The
dimensionality of vectors can be a critical factor: higher-
dimensional representations tend to be more expressive but
also more costly in terms of storage and computation.
Furthermore, since embeddings are trained on large
datasets, they may reflect and perpetuate biases present in
that data. For example, if an embedding model is trained on
texts containing gender or racial biases, these biases may
manifest in the vector representations, raising significant
ethical concerns.

Once relevant information is retrieved, it is incorporated
into the original prompt as additional context. The LLM
processes this enriched prompt to generate a response that
combines the model’s generative capabilities with the
specific information provided by the retrieval system. This
approach ensures that responses are not only contextually
appropriate but also based on up-to-date or specialized data,
which is especially useful in environments where precision
is critical, such as medicine, law, or scientific research.

However, using RAG is not without challenges. The quality
of the system largely depends on the precision and
relevance of the retrieved information. If the embedding
model or the vector database fails to correctly identify the
relevant fragments, the LLM might generate incorrect or
unhelpful responses. Additionally, implementing RAG
requires a more complex technical infrastructure, which
can be a barrier for organizations with limited resources.
The process of vectorizing external information and the
user’s query creates a workflow as described in Figure 1,
culminating in the generation of the final response. As an
example of some of the most relevant recent works in this
field, we can highlight JayBot [28], which uses ChatGPT
to provide a support system for a university's admissions
process. In [29], the potential of such systems in public
enterprises is explored to improve interactions between
governments and citizens. In [30], Lakkaraju et al. delve
into the trust that can be placed in these systems within a
financial context. The issue of information reliability and
its consequences is further analyzed in [31]. Finally,
Sahaay [32] is worth mentioning, a framework proposing

82 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 ISSN: 1690-4524

an ecosystem to improve customer service using LLM-
based chatbots.

Figure 1. Information processing flow in a RAG framework.
First, there is a one time setup process where external information
inside a Q&A Dataset is vectorized using an embedding model
and stored in a vector database. Then, there is an iterative process,
driven by each question: the user’s question is vectorized using
the same embedding model and sent to the vector database, where
the information most similar to the question is retrieved; a
contextualized prompt is built with this information and sent to
the main model as context; finally, the LLM generates the answer
for the user.

The project began with the need to evaluate and select the
appropriate equipment to implement a system based on
LLMs capable of managing sensitive university
information. This requirement involved initial tests with
different LLMs to determine the minimum hardware
capacities needed. One of the first conclusions was that
hardware requirements, especially in terms of GPU
memory (VRAM), were significantly high. This led the
team to seek a balance between cost and capacity,
dismissing the use of cloud services due to the sensitivity
of the data being handled.

A system equipped with an Intel Core i9 processor, 64GB
of RAM, and a NVidia RTX 4090 GPU with 24GB of
VRAM was chosen. This last component proved critical for
efficiently processing models of moderate size. With this
configuration, it was possible to work with models ranging
from 7 billion (7B) to 13 billion (13B) parameters but not
with larger ones, such as those between 60–80B, which
would have required more advanced and costly hardware.
The models selected for the initial tests included Llama2 in
7B and 13B versions, Falcon 7B, and Mistral 7B, both in
their foundational variants and their chat or instruct
adaptations.

The next step involved collecting and organizing the
information needed to feed the system. This process was
carried out in collaboration with PUCE's Academic

Directorate, which required a structured communication
strategy with the university's departments and faculties.
Group meetings were organized to present the general
concept of the project and request their collaboration in
gathering data in a question-and-answer (Q&A) format.
This approach allowed the capture of the most frequent
inquiries that end-users typically make, based on the
experience of the different departments.

However, the information initially collected was scattered
and lacked a uniform structure. To address this problem,
the development team prepared a set of generic questions
that were distributed to all departments, asking them to
adjust and answer these questions according to the
specificities of their area. This structured approach resulted
in a final database of over 2,000 Q&A entries, which served
as a fundamental input for building the system’s adapters.

In the adapter development stage, two main techniques
were explored: fine-tuning and Retrieval Augmented
Generation (RAG). Fine-tuning, which allows a base model
to be adjusted for specific tasks, presented significant
challenges due to the memory limitations of the available
hardware. To overcome this obstacle, Parameter-Efficient
Fine-Tuning (PEFT) techniques were implemented, such as
LoRA (Low Rank Adaptation) and QLoRA (Quantized
LoRA). These techniques enabled the use of additional
weight matrices on the original model, reducing
computational load and effectively adjusting the models
within hardware constraints.

In the case of RAG, the main challenge was selecting a
suitable embedding model to vectorize the data and an
efficient vector database for storing and retrieving
information. The embedding model
hiiamsid/sentence_similarity_spanish_es was chosen for its
solid performance in Spanish, along with the Faiss vector
database, known for its efficiency and flexibility. This
approach allowed the organization of information in a way
that could be quickly retrieved based on user queries.

The system's development involved the use of various
software libraries to manage technical complexities.
Among them, torch and transformers were used for general
operations related to LLMs; bitsandbytes, accelerate, and
peft facilitated model reduction to fit the available
hardware; and langchain, sentence-transformers, and faiss-
gpu provided support for RAG implementation. Each
combination of model and adaptation technique was
systematically tested to build specific adapters.

Once the adapters were developed, a qualitative evaluation
phase was conducted with the internal development team.
This process involved testing the adapters with a subset of
questions selected from the Q&A database and evaluating
the accuracy of the responses on two levels. First, the
correspondence of the responses with the data retrieved
from the vector database was examined. Second, the quality
of the final response generated by the model was analyzed,
ensuring that it was coherent, relevant, and complete.

Based on the results of this initial evaluation, the most
promising adapter was selected for a broader evaluation by
users from different departments and faculties of the
university. This step was crucial, as it involved those who

S
e
t
u
p Q

u
e
s
t
i
o
n

Q&A Dataset

Embeddings Model

Vector Database

Q&A Similarities

Large Language Model

Answer

3. METHODOLOGY

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 83

initially provided the base Q&A entries. Evaluators were
asked to focus on identifying problematic responses,
recording both the model-generated response and the
response they considered appropriate. This detailed
feedback was collected through a form designed to capture
concrete examples of discrepancies, providing the
development team with valuable information for future
system iterations.

The described process not only allowed for the construction
of a system tailored to the university’s specific needs but
also highlighted the importance of an iterative approach in
developing artificial intelligence-based systems. Lessons
learned during this phase, such as the importance of a
robust infrastructure, the need for well-organized data, and
the careful selection of adaptation techniques, laid the
groundwork for future improvements and project
expansions.

The first element to highlight is that between fine-tuning
and RAG, RAG is definitively the better choice. All tests
conducted with fine-tuning, regardless of the model or
internal technique, demonstrated noticeable inaccuracies.
This is attributed, as observed, to the adapter's inability to
incorporate new information into the model. As a result, the
responses tend to be predominantly hallucinatory and
contain information clearly derived from other sources used
during the base training.

Fine-tuning experiments were conducted with 20, 40, 60,
and 80 epochs on the data. While more repetitions seemed
to adjust the responses better to the provided information,
this ultimately resulted in mere stylistic refinements.
Fundamentally, the responses remained hallucinatory in
terms of informational quality. It is worth noting that while
chat or instruct models tend to provide better-structured
responses, this improvement is limited to their general
format and does not extend to the content itself. Regarding
the different models—Llama2, Falcon, or Mistral—no
significant differences were observed. Additionally, fine-
tuning required considerable time, taking approximately 14
hours with the largest models (13B) on the described setup.

When applying RAG, the first significant advantage is that
it does not require training time. Reconfiguring the
application with a new model is sufficient to test it almost
immediately (in just a few minutes). At this point, the
models were divided into two categories. For foundational
models, RAG produced poorly structured responses that
were ultimately not usable in a production system.
However, with chat or instruct models, the situation
changed radically.

In general, all these models delivered acceptable responses,
clearly incorporating the new contextual information
provided. However, some hallucinatory responses still
occurred, often when the Q&A retrieved from the database
was not closely related to the user's question. Another cause
observed in some cases was that the information contained
in the Q&A was inconclusive (e.g., not explicitly
affirmative or negative), leading the model to generate an
erroneous interpretation.

Another influential factor appears to be the embedding
model used to vectorize the information, including the
Q&A stored in the database and the user’s queries. Certain
tests conducted with a model different from the one used in
this study, sentence-transformers/distiluse-base-
multilingual-cased-v1, revealed differences that seemed to
favor this latter model.

After preliminary tests by the research team, it was decided
to use the Llama2 7B model for evaluation by the internal
test user group. While it could be argued that the 13B model
is superior, the differences were not substantial.
Furthermore, the 13B model required more time to generate
responses, which in some cases was noticeable to the user.
To improve user experience concerning response time, the
7B model was preferred.

Regarding resource usage, once the selected model
(Llama2 7B), reduced (quantized) to 4 bits, was loaded, it
utilized only 6GB of GPU VRAM, which remained stable
while the application was active. However, each user query
consumed 100% of the GPU until the response was
generated, creating a bottleneck when handling concurrent
queries. The CPU and its RAM usage were insignificant.

The application’s response times, excluding data
request/response transmission, varied significantly and
were primarily affected by simultaneous queries that
became queued and congested the GPU. Table 1 provides
a breakdown of average times by deciles. Eighty percent of
queries (deciles 1 to 8) took less than 20 seconds. Extreme
cases in decile 10, with an average time of 4 minutes, were
due to numerous simultaneous queries, often caused by the
same user sending identical requests in bursts or rapid
succession.

Table 1. Average response times by deciles.

Decil Avg.Req.Time
1 0,95
2 2,78
3 3,74
4 5,18
5 6,92
6 8,87
7 13,17
8 19,97
9 59,99

10 237,77
35,93

This information was gathered from a total of 147 sessions
or connections to the system, during which 329 questions
were asked, averaging 2.24 questions per session.

The most critical point, however, concerns the accuracy of
the system's responses. One of the final steps in this initial
phase of the project was to ask users to report any issues
they encountered. Although participation in this task was
not very high, 122 incidents were recorded, corresponding
to approximately one-third of the queries made.

4. RESULTS AND DISCUSSION

84 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 ISSN: 1690-4524

To better understand the causes of these problems and
attempt to address them in the next phase of the project, a
sample of these incidents was reviewed and compared
against the Q&A information in the database. An initial
categorization was attempted, and it was preliminarily
decided to create four categories to classify the incidents:
(1) lack of information in the Q&A database, (2) incorrect
or imprecise information in the Q&A database, (3)
questions unrelated to PUCE (Pontificia Universidad
Católica del Ecuador), and (4) “pure” hallucinations by the
model.

Of these four categories, it is anticipated that the majority
of incidents will fall into the first two categories,
representing the easiest cases to resolve, primarily
requiring database cleaning. Cases falling into the third
category may be more challenging to detect, but their
resolution would be straightforward, as it would only
require informing users that the system provides
information exclusively related to PUCE. The final
category will be the most complex, as it implies that, even
though the required information is available in the database,
the model chooses to follow a different path to generate the
response.

Finally, the system is currently running as a web
application developed in Flask, which has not yet been
refined or optimized for production environments. There is
confidence that there are several opportunities to improve
response times, particularly in multi-user contexts.

The development and implementation of a system based on
large language models (LLMs) to manage institutional
information for PUCE yielded valuable results that provide
fundamental conclusions and clear directions for future
work. These conclusions highlight both the strengths and
limitations of the techniques used, offering a framework for
optimizing the system in subsequent phases.

Firstly, the results demonstrated that Retrieval Augmented
Generation (RAG) is superior to fine-tuning for this type of
application. Fine-tuning, while conceptually appealing for
model customization, exhibited significant inaccuracies
that compromised the quality of the generated responses.
These shortcomings stem from fine-tuning's inherent
difficulty in incorporating new information without
significantly altering the model's pre-existing knowledge.
The resulting responses, often hallucinatory, did not meet
the quality standards required for a production system.
Additionally, the lengthy training times—up to 14 hours for
13B models—and the lack of significant differences among
the models tested (Llama2, Falcon, and Mistral)
underscored the disadvantages of this technique.

In contrast, RAG proved to be a more efficient and accurate
solution. Its main advantage lies in the ability to integrate
new information immediately by enriching prompts with
external data stored in vector databases. This approach
eliminates the need for retraining, significantly reducing
the time required to test or update the system with a new
model. Although RAG also presents some issues, such as
occasional hallucinations and errors when queries are

insufficiently related to the stored Q&A, these incidents are
more manageable compared to the problems observed with
fine-tuning.

Regarding technical performance, chat or instruct models
proved more effective in the RAG context, delivering
better-structured and more aligned responses to user
queries. However, the embedding model used to vectorize
information directly affected response quality. Tests
conducted with sentence-transformers/distiluse-base-
multilingual-cased-v suggested that this model could be
more effective than
hiiamsid/sentence_similarity_spanish_es, opening a line of
research to optimize embedding selection in future project
iterations.

The system's performance analysis, based on tests with the
Llama2 7B model reduced to 4 bits, identified both
strengths and areas for improvement. On the one hand, the
model’s initial load onto the GPU was efficient, using only
6GB of VRAM and maintaining stable consumption during
operation. However, concurrent queries created a
significant bottleneck, with response times in the worst-
case scenarios (10th decile) reaching up to 4 minutes due to
GPU congestion. This issue directly impacts user
experience and highlights the need to optimize resource
management and infrastructure to support a multi-user
environment.

Another critical aspect identified was the accuracy of the
system’s generated responses. The collection of incidents,
although limited to 122 reports, enabled the classification
of problems into four main categories: lack of information
in the Q&A database, incorrect or imprecise information,
questions outside the system’s scope, and pure
hallucinations by the model. This preliminary
categorization is a crucial step in guiding system
improvements. The first two categories, related to the
quality and coverage of the Q&A database, represent the
most immediate areas of intervention, as their resolution
primarily involves reviewing and cleaning the data.
Incidents related to questions outside the system’s scope
can be addressed by implementing mechanisms to clearly
inform users about the system’s limitations. However, pure
hallucinations by the model present a more complex
challenge, as they require deeper adjustments to the model's
integration and contextual information handling.

In terms of infrastructure, the current system runs as a web
application based on Flask, offering a functional but not yet
optimized foundation for a production environment.
Improving this application is a priority to ensure its
scalability, stability, and usability in real-world contexts. It
is essential to implement solutions to efficiently manage
simultaneous queries, such as load distribution across
multiple GPUs or the use of message queues to handle user
requests.

Future work includes several key actions to improve the
system. One of the first tasks will be to clean and enrich the
Q&A database to ensure it adequately addresses users' most
frequent and relevant queries. This involves correcting
errors, filling in missing information, and structuring the
data uniformly. The implementation of automated tools for
periodic validation and database updates could be

5. CONCLUSIONS AND FUTURE WORK

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 85

considered. Given the significant impact of the embedding
model on response quality, it will be crucial to conduct
extensive tests with different models to identify the most
suitable option. Additionally, fine-tuning an embedding
model specifically for PUCE’s data and context could be
explored.

To address the bottleneck caused by simultaneous queries,
strategies such as deploying additional GPU servers,
distributing the load across multiple system instances, and
employing techniques like asynchronous response
generation will be evaluated. Although reduced in RAG,
the phenomenon of model hallucinations remains a critical
challenge. Efforts will be made to mitigate these incidents
by adjusting the prompt generation pipeline, improving
data curation in the vector database, and potentially
modifying the LLM itself.

The Flask-based application must evolve into a more
robust, intuitive interface capable of handling multiple
users simultaneously. This includes improvements in user
experience, such as faster loading times and clear error
messages for out-of-scope queries. A continuous
monitoring system that automatically logs reported
incidents and system performance metrics is also
necessary. This monitoring will provide valuable data for
future iterations and enable more agile problem diagnostics
as they arise.

Finally, once the initial improvements are implemented, the
system should undergo testing in a limited production
environment to evaluate its performance in real-world
scenarios and gather feedback from end users. These
actions will help consolidate the system’s effectiveness and
reliability in a practical and scalable setting.

[1] M. Abbasi, M. Maks Davis, R. Melgarejo Heredia and
D. Ordóñez Camacho, “Artificial Intelligence: A
Look Back To The Future In University Education,”
in Proceedings of International Structural
Engineering and Construction, Quito, Ecuador:
ISEC Press, 2024. doi:
10.14455/ISEC.2024.11(1).EPE-11.

[2] Rafael Melgarejo-Heredia, Leslie Carr, and Susan
Halford. 2016. The public web and the public good.
In Proceedings of the 8th ACM Conference on
Web Science (WebSci '16). Association for
Computing Machinery, New York, NY, USA, 330–
332. https://doi.org/10.1145/2908131.2908181

[3] A. Turing, “Computing Machinery and Intelligence,”
Mind, vol. 59, no. October, pp. 433–60, 1950, doi:
10.1093/mind/lix.236.433.

[4] R. I. O. Martínez and M. N. B. Tello, “La mente
computacional. Orígenes y fundamentos de la ciencia
cognitiva.,” Protrepsis, no. 6, Art. no. 6, 2014, doi:
10.32870/prot.i6.92.

[5] C. B. Chadwick, “Estrategias cognoscitivas y
afectivas de aprendizaje. Parte (A),” Revista
latinoamericana de psicología, vol. 20, no. 2, pp.
163–184, 1988.

[6] S. Bubeck et al., “Sparks of Artificial General
Intelligence: Early experiments with GPT-4.” arXiv,
Apr. 13, 2023. doi: 10.48550/arXiv.2303.12712.

[7] C. Stokel-Walker and R. Van Noorden, “What
ChatGPT and generative AI mean for science,”
Nature, vol. 614, no. 7947, pp. 214–216, Feb. 2023,
doi: 10.1038/d41586-023-00340-6.

[8] K. S. Kalyan, A. Rajasekharan, and S. Sangeetha,
“AMMUS : A Survey of Transformer-based
Pretrained Models in Natural Language Processing.”
arXiv, Aug. 28, 2021. doi:
10.48550/arXiv.2108.05542.

[9] A. Vaswani et al., “Attention Is All You Need,” Aug.
01, 2023, arXiv: arXiv:1706.03762. doi:
10.48550/arXiv.1706.03762.

[10] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An
empirical exploration of recurrent network
architectures,” in International conference on
machine learning, PMLR, 2015, pp. 2342–2350.

[11] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A
Survey of Convolutional Neural Networks: Analysis,
Applications, and Prospects,” IEEE Transactions
on Neural Networks and Learning Systems, vol.
33, no. 12, pp. 6999–7019, Dec. 2022, doi:
10.1109/TNNLS.2021.3084827.

[12] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-
Attention with Relative Position Representations,”
Apr. 12, 2018, arXiv: arXiv:1803.02155. doi:
10.48550/arXiv.1803.02155.

[13] J.-B. Cordonnier, A. Loukas, and M. Jaggi, “Multi-
Head Attention: Collaborate Instead of
Concatenate,” May 20, 2021, arXiv:
arXiv:2006.16362. doi: 10.48550/arXiv.2006.16362.

[14] L. Floridi and M. Chiriatti, “GPT-3: Its nature, scope,
limits, and consequences,” Minds and Machines,
vol. 30, pp. 681–694, 2020.

[15] M. V. Koroteev, “BERT: A Review of Applications
in Natural Language Processing and Understanding,”
Mar. 22, 2021, arXiv: arXiv:2103.11943. doi:
10.48550/arXiv.2103.11943.

[16] Z. Hu et al., “LLM-Adapters: An Adapter Family for
Parameter-Efficient Fine-Tuning of Large Language
Models.” arXiv, Oct. 09, 2023. doi:
10.48550/arXiv.2304.01933.

[17] H. Li, Y. Su, D. Cai, Y. Wang, and L. Liu, “A Survey
on Retrieval-Augmented Text Generation.” arXiv,
Feb. 13, 2022. doi: 10.48550/arXiv.2202.01110.

[18] S. Devalal and A. Karthikeyan, “LoRa Technology -
An Overview,” in 2018 Second International
Conference on Electronics, Communication and
Aerospace Technology (ICECA), Mar. 2018, pp.
284–290. doi: 10.1109/ICECA.2018.8474715.

[19] T. Dettmers, A. Pagnoni, A. Holtzman, and L.
Zettlemoyer, “QLoRA: Efficient Finetuning of
Quantized LLMs.” arXiv, May 23, 2023. doi:
10.48550/arXiv.2305.14314.

[20] Z. Jing, Y. Su, and Y. Han, “When Large Language
Models Meet Vector Databases: A Survey,” Nov. 01,

6. REFERENCES

86 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 ISSN: 1690-4524

2024, arXiv: arXiv:2402.01763. doi:
10.48550/arXiv.2402.01763.

[21] M. Douze et al., “The Faiss library,” Sep. 06, 2024,
arXiv: arXiv:2401.08281. doi:
10.48550/arXiv.2401.08281.

[22] P. Indyk and R. Motwani, “Approximate nearest
neighbors: towards removing the curse of
dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing,
in STOC ’98. New York, NY, USA: Association for
Computing Machinery, May 1998, pp. 604–613. doi:
10.1145/276698.276876.

[23] P. Sun, “Announcing ScaNN: Efficient Vector
Similarity Search.” Google Research.
http://research.google/blog/announcing-scann-
efficient-vector-similarity-search/

[24] J. Wang et al., “Milvus: A Purpose-Built Vector Data
Management System,” in Proceedings of the 2021
International Conference on Management of
Data, in SIGMOD ’21. New York, NY, USA:
Association for Computing Machinery, Jun. 2021,
pp. 2614–2627. doi: 10.1145/3448016.3457550.

[25] L. Ma and Y. Zhang, “Using Word2Vec to process
big text data,” in 2015 IEEE International
Conference on Big Data (Big Data), Oct. 2015, pp.
2895–2897. doi: 10.1109/BigData.2015.7364114.

[26] T. Shi and Z. Liu, “Linking GloVe with word2vec,”
Nov. 26, 2014, arXiv: arXiv:1411.5595. doi:
10.48550/arXiv.1411.5595.

[27] H. Xia, “Continuous-bag-of-words and Skip-gram for
word vector training and text classification” J. Phys.:
Conf. Ser., vol. 2634, no. 1, p. 012052, Nov. 2023,
doi: 10.1088/1742-6596/2634/1/012052.

[28] D. Guthrie, B. Allison, W. Liu, L. Guthrie, and Y.
Wilks, “A closer look at skip-gram modelling.,” in
LREC, 2006, pp. 1222–1225.

[29] J. Odede and I. Frommholz, “JayBot -- Aiding
University Students and Admission with an LLM-
based Chatbot,” in Proceedings of the 2024
Conference on Human Information Interaction and
Retrieval, in CHIIR ’24. New York, NY, USA:
Association for Computing Machinery, Mar. 2024,
pp. 391–395. doi: 10.1145/3627508.3638293.

[30] A. Androutsopoulou, N. Karacapilidis, E. Loukis, and
Y. Charalabidis, “Transforming the communication
between citizens and government through AI-guided
chatbots,” Government Information Quarterly,
vol. 36, no. 2, pp. 358–367, Apr. 2019, doi:
10.1016/j.giq.2018.10.001.

[31] K. Lakkaraju, S. E. Jones, S. K. R. Vuruma, V.
Pallagani, B. C. Muppasani, and B. Srivastava,
“LLMs for Financial Advisement: A Fairness and
Efficacy Study in Personal Decision Making,” in
Proceedings of the Fourth ACM International
Conference on AI in Finance, in ICAIF ’23. New
York, NY, USA: Association for Computing
Machinery, Nov. 2023, pp. 100–107. doi:
10.1145/3604237.3626867.

[32] J. Crowder, “What Happens When a Chatbot Gives
Detrimental Advice? Who’s Responsible?,” in AI
Chatbots: The Good, The Bad, and The Ugly, J.
Crowder, Ed., Cham: Springer Nature Switzerland,
2024, pp. 121–133. doi: 10.1007/978-3-031-45509-
4_13.

[33] K. Pandya and M. Holia, “Automating Customer
Service using LangChain: Building custom open-
source GPT Chatbot for organizations.” arXiv, Oct.
09, 2023. doi: 10.48550/arXiv.2310.0

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 22 - NUMBER 5 - YEAR 2024 87

	SA846FY24

