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ABSTRACT 

The Aurel_AI research project was born from the need to 
implement a virtual help desk for a university, providing 
accurate organizational information to both internal and 
external clients. The information includes details about 
academic programs, regulations, processes, and personnel. 
Aurel_AI is part of a broader research program on the use 
of AI in academia. Traditional solutions for a help desk, 
such as telephone call centers, present quality and 
efficiency issues that are difficult to solve. Call center staff 
generally lack comprehensive knowledge about the 
institution, rely on specific information that is sometimes 
outdated, require additional systems for information 
retrieval, and experience high turnover rates. This leads to 
associated costs and issues related with outdated 
information, resulting in inaccurate responses and long 
waiting times.  Generative artificial intelligence models, 
known as Large Language Models (LLMs), offer an 
interesting alternative for an automated virtual help desk. 
These models can understand even vague and poorly 
structured questions and generate reasonably appropriate 
answers. However, they are not without flaws, as they tend 
to present issues like "hallucinations" when the required 
information is not present in their training data. To 
minimize this problem, it is crucial to ensure that the model 
has precise and comprehensive information, which needs 
a specific methodology for information collection, 
validation, and updating.  Base models require an 
adaptation process to be used for specific cases, for which 
techniques like Fine-Tuning and Retrieval Augmented 
Generation (RAG) exist. Fine-tuning retrains a model’s 
weights with new specific information, while RAG uses 

both proprietary information—in this case, from the 
university—and publicly available internet data. Both 
techniques have pros and cons that need to be evaluated to 
select the most suitable option. They also demand 
appropriate and specialized infrastructure, which is often 
expensive. Thus, another challenge is to find a balance 
between suitable equipment and reasonable costs.  The 
final system, from the user’s perspective, must be accurate, 
flexible, and adaptable to deliver a satisfactory experience. 
As the results show, Aurel_AI represents an advance in the 
digitalization of educational services, standing out for its 
ability to generate accurate and personalized responses. 
However, its current limitations, such as handling 
concurrent queries and hallucinations, underscore the need 
for adjustments to both infrastructure and data processing 
methodology. With strategic improvements, the system 
has the potential to consolidate itself as a replicable model 
for multiple university digital services. 

Keywords: LLM, chatbot, automated help desk, fine-
tuning, RAG. 

The Aurel_AI research project represents an innovative and 
strategic response to contemporary demands for precise and 
timely information within an educational institution. This 
project aims to implement a virtual help desk that 
transforms how the university interacts with its internal and 
external clients, optimizing the delivery of data related to 
academic offerings, regulations, administrative processes, 
and key contacts for students and collaborators. The 
primary objective of this project is the accuracy of the 
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information provided, as any error or outdated information 
could undermine users' trust and the service's effectiveness. 

Aurel_AI is part of a larger project on the use of artificial 
intelligence in the academic field [1], aligning with a global 
trend where emerging technologies are transforming higher 
education, from teaching and learning processes to 
administrative services. In this context, Aurel_AI not only 
serves as a technological tool but also as a strategic 
component that demonstrates how AI can address complex 
problems efficiently, surpassing the limitations of 
traditional solutions such as call centers. 

Call centers have been a widely used solution for providing 
support to users in various organizations, including 
academic institutions, corporations, and public services. 
However, this model, while functional in certain contexts, 
faces multiple challenges that limit its effectiveness, 
especially when used as a help desk to address questions 
about institutional information or complex processes. 
These challenges range from inaccuracies in the 
information provided to high operational costs, 
highlighting the need to explore more efficient alternatives 
adapted to current demands. 

Although information access to public data is not a 
limitation [2] within an enterprise like a university, one of 
the main issues with call centers is the inaccuracy of the 
information offered. This occurs because the personnel 
operating these platforms often lack comprehensive and up-
to-date knowledge about all aspects of the organization. 
The information available to the operators depends largely 
on databases or manuals that are often outdated. This lack 
of accuracy frustrates users, who expect quick and correct 
responses, and can also compromise trust in the institution, 
especially if errors persist or recur. 

Additionally, the call center model heavily relies on human 
factors, which come with both advantages and 
disadvantages. On the one hand, human contact can be 
beneficial for certain complex interactions that require 
empathy or contextual judgment. However, in terms of 
efficiency and consistency, this dependency introduces 
additional problems. Training personnel is costly and must 
be recurrent to ensure that operators are up to date with 
changes in processes, regulations, or organizational 
services. Even with training, operators can make mistakes 
due to time pressure or the repetitive nature of tasks, 
ultimately negatively impacting the user experience. 

Another significant challenge is the operational cost of call 
centers. These costs include salaries, benefits, training, 
technological infrastructure, and maintenance. 
Furthermore, the need to maintain an adequate number of 
operators to cover service hours increases these expenses, 
especially if extended support hours are required. For 
organizations with limited resources, such as some 
universities, these costs can be prohibitive. 

Time is also a weakness of call centers. Although they are 
designed to provide quick responses, users often face long 
waits due to saturated lines or the need to transfer calls 
between operators to find someone with the appropriate 
knowledge. These delays not only affect user satisfaction 
but also create a negative perception of the organization's 

responsiveness. 

In terms of customer experience, call centers also face 
issues related to personalization. Users often receive 
generic responses that do not fully address their specific 
concerns. This happens because operators are typically 
trained to handle a high volume of interactions rather than 
to dedicate time to each individual user. This lack of 
personalization can be particularly problematic in contexts 
where questions may be highly specialized, such as 
information about academic programs, enrollment 
processes, or specific scholarship requirements. 

In contrast, Aurel_AI proposes a solution based on natural 
language processing algorithms and machine learning. This 
tool would be capable of providing accurate real-time 
responses, minimizing errors and reducing operational 
costs. Its potential to integrate with other institutional 
information systems would ensure that the data provided to 
users is always up-to-date and aligned with the university's 
internal regulations and dynamics. Furthermore, Aurel_AI 
has the advantage of being able to operate 24/7, offering 
uninterrupted support and eliminating the time barriers that 
have traditionally limited customer service models like call 
centers. 

The implementation of a system like Aurel_AI would not 
only benefit users but also strengthen the university's 
institutional image by positioning it as an innovative entity 
committed to service excellence. The trust generated by a 
reliable information system would positively impact user 
experience, encouraging a closer and more efficient 
relationship between the institution and the community. 

Overall, the objective of this research project is to develop 
an automated system functioning as a help desk or chatbot, 
providing specific information about the university as 
accurately as possible. Specific objectives include building 
a methodology for collecting, cleaning, and updating 
information for the system; finding the appropriate 
combination of model and adaptation technique to deliver 
the most accurate responses possible; and developing a 
flexible and adaptable system that provides an acceptable 
user experience for both the administrative team and end 
users.  

From the earliest steps taken by Alan Turing in 
conceptualizing machines that mimic human thought [3], 
cognitive sciences have inspired significant advances in the 
creation of systems capable of analyzing, reasoning, and 
making decisions [4]. The central goal has been to replicate 
and enhance the human brain's ability to handle large 
volumes of information efficiently, answering to complex 
problems with precise solutions. In this quest, two initial 
approaches emerged which, although useful in their 
contexts, presented important limitations. 

The first approach, based on expert systems, consisted of 
building inference machines that operated on a previously 
filled knowledge base. These systems functioned like large 
libraries of rules and facts, capable of making reasoned 
decisions based on the information available. While 
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revolutionary at the time, these systems faced inherent 
design problems: their effectiveness depended on the 
quality and quantity of manually encoded knowledge, 
making them rigid and difficult to scale. Moreover, as the 
volume of data grew exponentially, they became unable to 
efficiently process information in real-time. 

The second approach sought to simplify the available 
information, highlighting only the most relevant elements 
for decision-making. This method, inspired by human 
cognitive strategies for filtering data [5], offered a more 
agile solution but at the cost of precision. By prioritizing 
certain data over others, there was a risk of overlooking 
critical information, which could lead to significant errors 
in the results. Additionally, this approach was not suitable 
for highly dynamic problems where seemingly irrelevant 
details could become crucial over time. 

With the advent of modern artificial intelligence models, 
especially Large Language Models (LLM) [6], these two 
approaches appear to have found a point of convergence. 
LLMs, such as Chat GPT, represent a technological 
evolution that combines the strengths of both previous 
paradigms. These models are not only capable of 
processing vast amounts of information in real-time but 
also feature advanced contextual understanding 
mechanisms, allowing them to identify meaningful patterns 
and relationships without losing sight of important details. 

LLMs utilize deep learning techniques based on neural 
networks. Unlike expert systems, they do not rely on a 
predefined set of rules but learn and generalize from large 
datasets during training. This allows them to adapt to a wide 
variety of contexts and problems without requiring manual 
reprogramming. Additionally, by integrating the ability to 
identify relevant information within massive datasets, they 
overcome the limitations of simplification methods, 
reducing the risk of inaccuracy. 

Another fundamental advantage of LLMs is their ability to 
handle the exponential growth of data, a challenge 
traditional approaches could not effectively address. These 
models are designed to scale efficiently, taking profit of 
advances in computational hardware and optimization 
techniques. Their ability to process information in parallel 
and contextually enables them to quickly answer complex 
questions, generating precise and comprehensive answers 
even in scenarios of high uncertainty. 

Furthermore, LLMs have proven to be valuable tools not 
only for decision-making but also for advanced creative 
and cognitive tasks. Their ability to generate natural 
language, summarize information, translate languages, and 
perform predictive analysis positions them as versatile 
solutions across a wide range of fields, from education to 
medicine and scientific research. 

LLMs represent one of the most significant advances in 
modern artificial intelligence, specializing in understanding 
and interpreting human language. These models have 
revolutionized how we interact with machines, particularly 
through applications such as chatbots, virtual assistants, 
and content generators. A crucial aspect of LLMs is their 
ability to work with generative artificial intelligence 
models [7], which can produce coherent and plausible text 

based on an initial user-provided input. In this regard, 
LLMs demonstrate a remarkable capacity to interpret 
questions or text inputs even if they are poorly structured. 
This is particularly useful in applications where users may 
express their questions informally, such as in customer 
service chatbots or interactive educational systems. For 
example, an LLM can understand a poorly phrased 
question and provide a coherent answer, lowering the entry 
barrier for users. 

Despite their capabilities, LLMs are not without 
limitations. One of the most notable issues is the 
phenomenon known as "hallucinations", where the model 
generates incorrect or fabricated answers. This typically 
occurs when the model lacks sufficient relevant 
information in its training data to address a specific 
question. For instance, if a user asks about a highly 
specialized topic that was not well-represented in the initial 
dataset, the model might provide an apparently plausible 
response, but one whose content is incorrect. 

This problem is exacerbated by the confidence with which 
LLMs present their responses. For the average user, 
distinguishing between a precise answer and a hallucination 
can be challenging, potentially leading to 
misunderstandings or decisions based on erroneous 
information. This underscores the importance of 
implementing validation strategies and human oversight in 
critical applications of LLMs, particularly in sectors such 
as healthcare, law, and education, where precision is 
essential. 

The functioning of LLMs is based on a fundamental 
principle: predicting the next word or token in a given text 
sequence. This process is made possible by massive 
training with enormous volumes of text gathered from the 
internet and other data sources. The primary goal is for the 
models to develop a statistical understanding of how words 
and phrases relate to each other in different contexts. Thus, 
when a user poses a question or provides an initial text, the 
model can generate a continuation that is coherent and 
relevant. 

The precision and versatility of LLMs largely depend on 
their ability to interpret the context of the text they process. 
This is where Transformer Models [8] come into play, a 
subtype of models that have radically changed the field of 
natural language processing.  

Transformer Models are a neural network architecture 
designed to efficiently and effectively handle sequential 
data, such as natural language. Introduced in the paper 
"Attention is All You Need" [9], transformers have 
revolutionized natural language processing and other areas 
of artificial intelligence by overcoming the limitations of 
previous architectures, such as recurrent neural networks 
(RNNs) [10] and convolutional neural networks (CNNs) 
[11], especially in tasks that require understanding complex 
and long-term relationships between elements of a 
sequence. 

The functioning of transformers is based on two key 
principles: the attention mechanism and processing 
parallelization. Both combine to provide a more efficient 
way to model relationships between different parts of a 
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sequence. The core of transformers is the Self-Attention 
mechanism [12], which allows models to focus on different 
parts of the input sequence while processing a particular 
element. This mechanism calculates the relative 
importance of each word or token concerning the others in 
the same sequence, assigning weights that indicate how 
they influence one another. To calculate attention, three 
main vectors are used: Query, representing the word 
currently being processed; Key, representing the reference 
words in the sequence; and Value, containing the 
contextual information associated with each word. 
Attention is measured by calculating the similarity between 
the Query and Key vectors, obtaining a score that is used to 
weigh the corresponding Values. This process allows each 
word in a sequence to dynamically attend to others, 
capturing complex contextual relationships. Multi-Head 
Attention [13] further enhances this mechanism, enabling 
the model to capture different types of relationships 
simultaneously, increasing its ability to understand varied 
contexts. 

Unlike recurrent networks, which process data sequentially 
and face scalability challenges, transformers process all 
elements of a sequence simultaneously. This approach is 
achieved through positional representations that indicate 
the relative order of tokens, as transformers lack inherent 
sequential structure. The resulting parallelization not only 
significantly accelerates training but also enables the 
handling of larger datasets, facilitating the creation of large-
scale models such as GPT [14] and BERT [15]. 

The architecture of transformers includes two main 
components: the encoder and the decoder. The encoder 
takes an input sequence and generates a contextualized 
representation of it, useful for tasks like text classification 
or machine translation. The decoder generates an output 
based on the representation created by the encoder, being 
particularly valuable in generative tasks such as text 
creation. Transformers excel in their ability to capture long-
term relationships and process complete sequences in 
parallel. These characteristics make them more scalable 
and effective than previous architectures. 

LLMs are highly versatile and can be adapted to perform a 
variety of specific functions through an adaptation process. 
In this process, the base model—trained on general data—
is customized using additional datasets designed for 
specific use cases. For instance, "chat" or "instruct" models 
are specifically designed to maintain fluid conversations 
and generate clear answers to user questions. Similarly, 
LLMs can be customized for creative tasks, such as writing 
in a specific literary style, or for business applications, like 
providing specialized answers based on a company’s 
internal information. For example, a base model can be 
tailored to answer specific questions about products, 
internal policies, or operational procedures unique to an 
institution. This adjustment allows the model to provide 
responses that are not only accurate but also aligned with 
the organization’s context and specific needs. This 
approach has been used to develop specialized virtual 
assistants, content generation tools for marketing, and even 
automated technical support systems. 

The development of adapters for artificial intelligence 
models, particularly LLMs, has advanced significantly, 
offering increasingly efficient and practical solutions to 
customize these models for specific needs. Currently, there 
are two fundamental techniques for this purpose: fine-
tuning [16] and Retrieval Augmented Generation (RAG) 
[17]. These strategies allow a base model, previously 
trained on large volumes of general data, to be adjusted for 
more precise responses to specific tasks or domains. 

Fine-tuning, in its purest form, involves retraining all the 
weights of the original model by feeding it new 
information, enabling it to learn additional relationships 
between tokens or words. Technically, this means the 
model adjusts the values that define connections between 
its layers, modifying its understanding of language and its 
ability to generate responses. However, this approach is 
highly demanding in terms of computational resources, 
requiring significant processing power and memory, as it 
involves working with billions of parameters. For this 
reason, full fine-tuning is challenging to implement in 
environments where access to specialized hardware, such 
as high-end graphics processing units (GPUs), is limited. 

In response to these limitations, an alternative technique 
known as Low Rank Adaptation (LoRA) [18] has emerged, 
which significantly simplifies the model adjustment 
process. LoRA introduces an additional matrix of weights 
superimposed on the original model, and it is this matrix, 
rather than the complete model, that is trained. This 
approach is notably more efficient because the additional 
matrix is relatively small compared to the entire structure 
of the base model. Despite its simplicity, LoRA has proven 
to be nearly as effective as full fine-tuning in a variety of 
applications, making it a viable and attractive option for 
adapting models in resource-constrained scenarios. 

One of LoRA's main advantages is its ability to reduce 
memory demands during the adaptation process. This 
feature has been further enhanced with variations such as 
Quantized LoRA (QLoRA) [19], which uses quantization 
techniques to further decrease hardware requirements 
without significantly compromising model performance. 
QLoRA is particularly useful for adapting large language 
models on relatively common hardware devices, 
democratizing access to the customization of advanced 
models. This innovation paves the way for its 
implementation in academic projects, small businesses, and 
other ventures where budgets or infrastructure are limited. 

RAG represents an increasingly popular approach. RAG 
combines the generative capabilities of LLMs with external 
databases that enrich the context of responses. Instead of 
retraining the model, this technique allows it to query 
additional information in real-time to generate more precise 
and relevant results. This avoids the costs and time 
associated with fine-tuning or LoRA, as it does not require 
directly modifying the model’s weights. However, RAG 
presents its own challenges, such as the need to design 
highly organized databases and efficient information 
retrieval systems. 

RAG is a technique that enhances the capabilities of LLMs 
by integrating them with external sources of information 
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without modifying the base model. Essentially, RAG 
improves the quality of generated responses by 
constructing enriched prompts that include additional 
context relevant to the user's question. This context is 
obtained through a prior process of searching and retrieving 
information, which uses external sources such as 
documents, websites, or specialized databases. The LLM 
receives this expanded prompt and processes it to 
summarize, structure, and present a coherent and well-
informed response. 

The key to RAG lies in its ability to complement the 
inherent limitations of LLMs, such as the lack of updated 
or specialized information not included in the training data. 
Instead of retraining the base model or adapting it through 
techniques like fine-tuning, RAG delegates the task of 
contextualization to an external infrastructure that gathers 
and organizes relevant information. In this way, the base 
model acts as a synthesizer of information, transforming 
previously retrieved data into a precise and structured 
response. 

For RAG to function effectively, an infrastructure beyond 
the LLM is required. First, it is necessary to have additional 
sources of information that can be quickly queried. These 
sources may include organizational databases, document 
libraries, or even public websites. However, the challenge 
lies not only in accessing these sources but also in 
identifying and extracting only the information relevant to 
the user’s query. To achieve this, vector databases [20] such 
as Faiss [21] are used, which efficiently organize and search 
information through vector indices. 

A vector database is a storage and retrieval system 
specifically designed to handle and organize data in the 
form of vectors in a multidimensional space. In this context, 
vectors are mathematical representations of data, generated 
through machine learning techniques or data processing, 
encapsulating relevant information about the represented 
elements, such as text, images, audio, or video. Unlike 
traditional databases, which typically work with structured 
data like rows and columns, vector databases are optimized 
for search and retrieval operations based on vector 
similarities. 

The primary purpose of a vector database is to facilitate the 
search for similar elements within a dataset using proximity 
metrics such as Euclidean distance, cosine similarity, or 
Manhattan distance. These metrics measure how close or 
related the vector representations of different elements are. 
For example, in a system that stores vector representations 
of words, words with similar meanings can be searched 
based on the proximity of their vectors in multidimensional 
space. 

The vector representation of data is generated by machine 
learning models known as embedding models, which 
convert complex data (such as a sentence) into fixed-
dimensional vectors. These vectors preserve semantic and 
contextual relationships between data, allowing related 
elements to be close to each other in the vector space. This 
principle is particularly useful in tasks such as information 
retrieval, image analysis, and product recommendation, 

where it is essential to compare elements based on their 
content or context. 

A vector database is organized around indexes that 
facilitate the quick search of similar vectors. The vector 
index is an optimized data structure that significantly 
reduces search time in large datasets. Without these 
indexes, finding similar vectors would require calculating 
the distances between all stored vectors and the query 
vector, which would become computationally expensive as 
the amount of data increases. 

Vector indexes employ advanced optimization techniques, 
such as Approximate Nearest Neighbor (ANN) search 
algorithms [22], which quickly find the vectors most like a 
query without requiring an exhaustive search. Among the 
most well-known implementations of these algorithms are 
Faiss (Facebook AI Similarity Search), ScaNN (Scalable 
Nearest Neighbor) [23], and Milvus [24], which offer 
specialized tools for handling large volumes of vector data 
in practical applications. 

The typical workflow of using a vector database begins 
with creating embeddings of the data to be stored. For 
instance, in a text search application, each document or text 
fragment is processed by an embedding model that 
generates a vector representing its content. These vectors 
are stored in the vector database along with an identifier 
that links them to the original data. When a user submits a 
query, it is also converted into a vector using the same 
embedding model. The vector database compares this 
query vector with the stored vectors to identify the most 
similar ones, returning the corresponding elements. 

Vector databases have proven to be particularly useful in 
artificial intelligence and machine learning applications. 
For example, in recommendation systems, they enable the 
comparison of user profiles or product features to suggest 
relevant items. In image recognition, they can store vector 
representations of images and quickly retrieve those 
visually like a query. In natural language processing, they 
are used to build systems such as Retrieval Augmented 
Generation (RAG), where vector representations of 
documents allow the retrieval of relevant information based 
on user-generated queries. 

However, working with vector databases also presents 
technical challenges. One of the main issues is the 
dimensionality of the data. High-dimensional vectors, 
while expressive, can be costly to store and process, leading 
to problems known as the "curse of dimensionality." This 
phenomenon implies that, as dimensionality increases, the 
distances between vectors become less meaningful, 
potentially complicating the accurate identification of 
nearest neighbors. To mitigate this problem, techniques 
such as dimensionality reduction and optimization of vector 
indexes are employed. 

Another challenge is scalability, especially in applications 
that manage billions of vectors. Implementations like Faiss 
address this issue by offering support for distributed 
searches and optimization for specialized hardware, such as 
GPUs, which allow large volumes of data to be handled 
efficiently. Additionally, modern vector databases often 
integrate mechanisms for managing real-time data updates, 
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ensuring that the system can dynamically adapt to changes 
in the stored data. 

Vector databases inherit the limitations and biases of the 
embedding models that generate the vector representations. 
If an embedding model is trained on biased data, searches 
conducted in the vector database may perpetuate these 
biases, affecting the fairness and objectivity of applications. 
Therefore, it is essential to consider both the quality of the 
training data and the interpretation of the results. 

An embedding model is a type of machine learning model 
designed to represent data—such as words, phrases, 
documents, or any type of textual or non-textual 
information—in a fixed-dimensional mathematical vector 
space. In this space, each data element is converted into a 
numerical vector, and the semantic relationships between 
elements are reflected in the distances or similarities 
between their respective vectors. This technique has 
revolutionized multiple fields, including natural language 
processing, information retrieval, and other domains, by 
providing an efficient and effective way to capture complex 
and contextual relationships between data. 

The underlying concept of an embedding model lies in its 
ability to transform input data, which is often categorical or 
sequential, into a dense and continuous representation that 
captures the essential features of the content. For example, 
in the case of words in text, an embedding model like 
Word2Vec or GloVe assigns each word a numerical vector 
of reduced dimensions, typically ranging from 50 to 300 
dimensions [25] [26]. This vector not only represents the 
word in isolation but also encapsulates information about 
its context, such as its meaning and its relationship to other 
words. 

The way embedding models are trained varies, but their 
common goal is to learn representations that preserve the 
semantics of the data. In natural language processing, this 
is achieved using methods such as supervised learning, 
unsupervised learning, or self-supervised learning. For 
instance, in the Word2Vec model, two main techniques are 
employed: the CBOW (Continuous Bag of Words) model 
[27], which predicts a word based on its surrounding 
context, and the Skip-gram model [33], which predicts the 
context given a word. Both methods aim to optimize a loss 
function that measures the model's ability to capture 
contextual relationships in the training data. As the model’s 
parameters are fine-tuned, the vectors representing words 
begin to organize themselves in the vector space, so that 
semantically similar words are positioned closer to each 
other. 

One of the most powerful properties of embeddings is their 
ability to capture complex semantic and syntactic 
relationships. For example, in a word vector space trained 
with Word2Vec, the relationship between "King" and 
"Queen" can be mathematically represented as a vector 
similar to that linking "Man" and "Woman." This emergent 
property, known as semantic compositionality, enables 
embedding models to generalize the knowledge learned to 
new contexts, making them extremely useful in tasks such 
as machine translation, text classification, and information 
retrieval. 

Embedding models are not limited to natural language 
processing. In information retrieval applications, such as 
RAG, embeddings are used to represent documents, text 
fragments, or even user queries as vectors. A key example 
of this is the use of vector databases, where indexed data is 
stored in the form of embeddings. When a user poses a 
query, it is also vectorized using the same embedding 
model, and the similarities between the query vector and 
the stored vectors are calculated to retrieve the most 
relevant data. 

Embeddings have also evolved to handle more complex 
and contextual data. Advanced models like BERT and GPT 
generate contextual embeddings, where the vector 
representations of a word or phrase vary depending on its 
position and meaning in a specific context. This represents 
a significant improvement over traditional models, which 
assigned a single fixed vector to each word regardless of its 
use in different contexts. 

In addition to their practical utility, embedding models 
present technical and ethical challenges. The 
dimensionality of vectors can be a critical factor: higher-
dimensional representations tend to be more expressive but 
also more costly in terms of storage and computation. 
Furthermore, since embeddings are trained on large 
datasets, they may reflect and perpetuate biases present in 
that data. For example, if an embedding model is trained on 
texts containing gender or racial biases, these biases may 
manifest in the vector representations, raising significant 
ethical concerns. 

Once relevant information is retrieved, it is incorporated 
into the original prompt as additional context. The LLM 
processes this enriched prompt to generate a response that 
combines the model’s generative capabilities with the 
specific information provided by the retrieval system. This 
approach ensures that responses are not only contextually 
appropriate but also based on up-to-date or specialized data, 
which is especially useful in environments where precision 
is critical, such as medicine, law, or scientific research. 

However, using RAG is not without challenges. The quality 
of the system largely depends on the precision and 
relevance of the retrieved information. If the embedding 
model or the vector database fails to correctly identify the 
relevant fragments, the LLM might generate incorrect or 
unhelpful responses. Additionally, implementing RAG 
requires a more complex technical infrastructure, which 
can be a barrier for organizations with limited resources. 
The process of vectorizing external information and the 
user’s query creates a workflow as described in Figure 1, 
culminating in the generation of the final response. As an 
example of some of the most relevant recent works in this 
field, we can highlight JayBot [28], which uses ChatGPT 
to provide a support system for a university's admissions 
process. In [29], the potential of such systems in public 
enterprises is explored to improve interactions between 
governments and citizens. In [30], Lakkaraju et al. delve 
into the trust that can be placed in these systems within a 
financial context. The issue of information reliability and 
its consequences is further analyzed in [31]. Finally, 
Sahaay [32] is worth mentioning, a framework proposing 
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an ecosystem to improve customer service using LLM-
based chatbots. 

 

Figure 1. Information processing flow in a RAG framework. 
First, there is a one time setup process where external information 
inside a Q&A Dataset is vectorized using an embedding model 
and stored in a vector database. Then, there is an iterative process, 
driven by each question: the user’s question is vectorized using 
the same embedding model and sent to the vector database, where 
the information most similar to the question is retrieved; a 
contextualized prompt is built with this information and sent to 
the main model as context; finally, the LLM generates the answer 
for the user. 

The project began with the need to evaluate and select the 
appropriate equipment to implement a system based on 
LLMs capable of managing sensitive university 
information. This requirement involved initial tests with 
different LLMs to determine the minimum hardware 
capacities needed. One of the first conclusions was that 
hardware requirements, especially in terms of GPU 
memory (VRAM), were significantly high. This led the 
team to seek a balance between cost and capacity, 
dismissing the use of cloud services due to the sensitivity 
of the data being handled.   

A system equipped with an Intel Core i9 processor, 64GB 
of RAM, and a NVidia RTX 4090 GPU with 24GB of 
VRAM was chosen. This last component proved critical for 
efficiently processing models of moderate size. With this 
configuration, it was possible to work with models ranging 
from 7 billion (7B) to 13 billion (13B) parameters but not 
with larger ones, such as those between 60–80B, which 
would have required more advanced and costly hardware. 
The models selected for the initial tests included Llama2 in 
7B and 13B versions, Falcon 7B, and Mistral 7B, both in 
their foundational variants and their chat or instruct 
adaptations.   

The next step involved collecting and organizing the 
information needed to feed the system. This process was 
carried out in collaboration with PUCE's Academic 

Directorate, which required a structured communication 
strategy with the university's departments and faculties. 
Group meetings were organized to present the general 
concept of the project and request their collaboration in 
gathering data in a question-and-answer (Q&A) format. 
This approach allowed the capture of the most frequent 
inquiries that end-users typically make, based on the 
experience of the different departments.   

However, the information initially collected was scattered 
and lacked a uniform structure. To address this problem, 
the development team prepared a set of generic questions 
that were distributed to all departments, asking them to 
adjust and answer these questions according to the 
specificities of their area. This structured approach resulted 
in a final database of over 2,000 Q&A entries, which served 
as a fundamental input for building the system’s adapters.   

In the adapter development stage, two main techniques 
were explored: fine-tuning and Retrieval Augmented 
Generation (RAG). Fine-tuning, which allows a base model 
to be adjusted for specific tasks, presented significant 
challenges due to the memory limitations of the available 
hardware. To overcome this obstacle, Parameter-Efficient 
Fine-Tuning (PEFT) techniques were implemented, such as 
LoRA (Low Rank Adaptation) and QLoRA (Quantized 
LoRA). These techniques enabled the use of additional 
weight matrices on the original model, reducing 
computational load and effectively adjusting the models 
within hardware constraints.   

In the case of RAG, the main challenge was selecting a 
suitable embedding model to vectorize the data and an 
efficient vector database for storing and retrieving 
information. The embedding model 
hiiamsid/sentence_similarity_spanish_es was chosen for its 
solid performance in Spanish, along with the Faiss vector 
database, known for its efficiency and flexibility. This 
approach allowed the organization of information in a way 
that could be quickly retrieved based on user queries.   

The system's development involved the use of various 
software libraries to manage technical complexities. 
Among them, torch and transformers were used for general 
operations related to LLMs; bitsandbytes, accelerate, and 
peft facilitated model reduction to fit the available 
hardware; and langchain, sentence-transformers, and faiss-
gpu provided support for RAG implementation. Each 
combination of model and adaptation technique was 
systematically tested to build specific adapters.   

Once the adapters were developed, a qualitative evaluation 
phase was conducted with the internal development team. 
This process involved testing the adapters with a subset of 
questions selected from the Q&A database and evaluating 
the accuracy of the responses on two levels. First, the 
correspondence of the responses with the data retrieved 
from the vector database was examined. Second, the quality 
of the final response generated by the model was analyzed, 
ensuring that it was coherent, relevant, and complete.   

Based on the results of this initial evaluation, the most 
promising adapter was selected for a broader evaluation by 
users from different departments and faculties of the 
university. This step was crucial, as it involved those who 
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initially provided the base Q&A entries. Evaluators were 
asked to focus on identifying problematic responses, 
recording both the model-generated response and the 
response they considered appropriate. This detailed 
feedback was collected through a form designed to capture 
concrete examples of discrepancies, providing the 
development team with valuable information for future 
system iterations.   

The described process not only allowed for the construction 
of a system tailored to the university’s specific needs but 
also highlighted the importance of an iterative approach in 
developing artificial intelligence-based systems. Lessons 
learned during this phase, such as the importance of a 
robust infrastructure, the need for well-organized data, and 
the careful selection of adaptation techniques, laid the 
groundwork for future improvements and project 
expansions.   

The first element to highlight is that between fine-tuning 
and RAG, RAG is definitively the better choice. All tests 
conducted with fine-tuning, regardless of the model or 
internal technique, demonstrated noticeable inaccuracies. 
This is attributed, as observed, to the adapter's inability to 
incorporate new information into the model. As a result, the 
responses tend to be predominantly hallucinatory and 
contain information clearly derived from other sources used 
during the base training. 

Fine-tuning experiments were conducted with 20, 40, 60, 
and 80 epochs on the data. While more repetitions seemed 
to adjust the responses better to the provided information, 
this ultimately resulted in mere stylistic refinements. 
Fundamentally, the responses remained hallucinatory in 
terms of informational quality. It is worth noting that while 
chat or instruct models tend to provide better-structured 
responses, this improvement is limited to their general 
format and does not extend to the content itself. Regarding 
the different models—Llama2, Falcon, or Mistral—no 
significant differences were observed. Additionally, fine-
tuning required considerable time, taking approximately 14 
hours with the largest models (13B) on the described setup. 

When applying RAG, the first significant advantage is that 
it does not require training time. Reconfiguring the 
application with a new model is sufficient to test it almost 
immediately (in just a few minutes). At this point, the 
models were divided into two categories. For foundational 
models, RAG produced poorly structured responses that 
were ultimately not usable in a production system. 
However, with chat or instruct models, the situation 
changed radically. 

In general, all these models delivered acceptable responses, 
clearly incorporating the new contextual information 
provided. However, some hallucinatory responses still 
occurred, often when the Q&A retrieved from the database 
was not closely related to the user's question. Another cause 
observed in some cases was that the information contained 
in the Q&A was inconclusive (e.g., not explicitly 
affirmative or negative), leading the model to generate an 
erroneous interpretation. 

Another influential factor appears to be the embedding 
model used to vectorize the information, including the 
Q&A stored in the database and the user’s queries. Certain 
tests conducted with a model different from the one used in 
this study, sentence-transformers/distiluse-base-
multilingual-cased-v1, revealed differences that seemed to 
favor this latter model. 

After preliminary tests by the research team, it was decided 
to use the Llama2 7B model for evaluation by the internal 
test user group. While it could be argued that the 13B model 
is superior, the differences were not substantial. 
Furthermore, the 13B model required more time to generate 
responses, which in some cases was noticeable to the user. 
To improve user experience concerning response time, the 
7B model was preferred. 

Regarding resource usage, once the selected model 
(Llama2 7B), reduced (quantized) to 4 bits, was loaded, it 
utilized only 6GB of GPU VRAM, which remained stable 
while the application was active. However, each user query 
consumed 100% of the GPU until the response was 
generated, creating a bottleneck when handling concurrent 
queries. The CPU and its RAM usage were insignificant. 

The application’s response times, excluding data 
request/response transmission, varied significantly and 
were primarily affected by simultaneous queries that 
became queued and congested the GPU. Table 1 provides 
a breakdown of average times by deciles. Eighty percent of 
queries (deciles 1 to 8) took less than 20 seconds. Extreme 
cases in decile 10, with an average time of 4 minutes, were 
due to numerous simultaneous queries, often caused by the 
same user sending identical requests in bursts or rapid 
succession. 

Table 1. Average response times by deciles. 

Decil  Avg.Req.Time 
1 0,95 
2 2,78 
3 3,74 
4 5,18 
5 6,92 
6 8,87 
7 13,17 
8 19,97 
9 59,99 

10 237,77  
35,93 

 

This information was gathered from a total of 147 sessions 
or connections to the system, during which 329 questions 
were asked, averaging 2.24 questions per session.  

The most critical point, however, concerns the accuracy of 
the system's responses. One of the final steps in this initial 
phase of the project was to ask users to report any issues 
they encountered. Although participation in this task was 
not very high, 122 incidents were recorded, corresponding 
to approximately one-third of the queries made. 

4.  RESULTS AND DISCUSSION 
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To better understand the causes of these problems and 
attempt to address them in the next phase of the project, a 
sample of these incidents was reviewed and compared 
against the Q&A information in the database. An initial 
categorization was attempted, and it was preliminarily 
decided to create four categories to classify the incidents: 
(1) lack of information in the Q&A database, (2) incorrect 
or imprecise information in the Q&A database, (3) 
questions unrelated to PUCE (Pontificia Universidad 
Católica del Ecuador), and (4) “pure” hallucinations by the 
model. 

Of these four categories, it is anticipated that the majority 
of incidents will fall into the first two categories, 
representing the easiest cases to resolve, primarily 
requiring database cleaning. Cases falling into the third 
category may be more challenging to detect, but their 
resolution would be straightforward, as it would only 
require informing users that the system provides 
information exclusively related to PUCE. The final 
category will be the most complex, as it implies that, even 
though the required information is available in the database, 
the model chooses to follow a different path to generate the 
response. 

Finally, the system is currently running as a web 
application developed in Flask, which has not yet been 
refined or optimized for production environments. There is 
confidence that there are several opportunities to improve 
response times, particularly in multi-user contexts. 

The development and implementation of a system based on 
large language models (LLMs) to manage institutional 
information for PUCE yielded valuable results that provide 
fundamental conclusions and clear directions for future 
work. These conclusions highlight both the strengths and 
limitations of the techniques used, offering a framework for 
optimizing the system in subsequent phases.   

Firstly, the results demonstrated that Retrieval Augmented 
Generation (RAG) is superior to fine-tuning for this type of 
application. Fine-tuning, while conceptually appealing for 
model customization, exhibited significant inaccuracies 
that compromised the quality of the generated responses. 
These shortcomings stem from fine-tuning's inherent 
difficulty in incorporating new information without 
significantly altering the model's pre-existing knowledge. 
The resulting responses, often hallucinatory, did not meet 
the quality standards required for a production system. 
Additionally, the lengthy training times—up to 14 hours for 
13B models—and the lack of significant differences among 
the models tested (Llama2, Falcon, and Mistral) 
underscored the disadvantages of this technique.   

In contrast, RAG proved to be a more efficient and accurate 
solution. Its main advantage lies in the ability to integrate 
new information immediately by enriching prompts with 
external data stored in vector databases. This approach 
eliminates the need for retraining, significantly reducing 
the time required to test or update the system with a new 
model. Although RAG also presents some issues, such as 
occasional hallucinations and errors when queries are 

insufficiently related to the stored Q&A, these incidents are 
more manageable compared to the problems observed with 
fine-tuning.   

Regarding technical performance, chat or instruct models 
proved more effective in the RAG context, delivering 
better-structured and more aligned responses to user 
queries. However, the embedding model used to vectorize 
information directly affected response quality. Tests 
conducted with sentence-transformers/distiluse-base-
multilingual-cased-v suggested that this model could be 
more effective than 
hiiamsid/sentence_similarity_spanish_es, opening a line of 
research to optimize embedding selection in future project 
iterations.   

The system's performance analysis, based on tests with the 
Llama2 7B model reduced to 4 bits, identified both 
strengths and areas for improvement. On the one hand, the 
model’s initial load onto the GPU was efficient, using only 
6GB of VRAM and maintaining stable consumption during 
operation. However, concurrent queries created a 
significant bottleneck, with response times in the worst-
case scenarios (10th decile) reaching up to 4 minutes due to 
GPU congestion. This issue directly impacts user 
experience and highlights the need to optimize resource 
management and infrastructure to support a multi-user 
environment.   

Another critical aspect identified was the accuracy of the 
system’s generated responses. The collection of incidents, 
although limited to 122 reports, enabled the classification 
of problems into four main categories: lack of information 
in the Q&A database, incorrect or imprecise information, 
questions outside the system’s scope, and pure 
hallucinations by the model. This preliminary 
categorization is a crucial step in guiding system 
improvements. The first two categories, related to the 
quality and coverage of the Q&A database, represent the 
most immediate areas of intervention, as their resolution 
primarily involves reviewing and cleaning the data. 
Incidents related to questions outside the system’s scope 
can be addressed by implementing mechanisms to clearly 
inform users about the system’s limitations. However, pure 
hallucinations by the model present a more complex 
challenge, as they require deeper adjustments to the model's 
integration and contextual information handling.   

In terms of infrastructure, the current system runs as a web 
application based on Flask, offering a functional but not yet 
optimized foundation for a production environment. 
Improving this application is a priority to ensure its 
scalability, stability, and usability in real-world contexts. It 
is essential to implement solutions to efficiently manage 
simultaneous queries, such as load distribution across 
multiple GPUs or the use of message queues to handle user 
requests.   

Future work includes several key actions to improve the 
system. One of the first tasks will be to clean and enrich the 
Q&A database to ensure it adequately addresses users' most 
frequent and relevant queries. This involves correcting 
errors, filling in missing information, and structuring the 
data uniformly. The implementation of automated tools for 
periodic validation and database updates could be 
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considered. Given the significant impact of the embedding 
model on response quality, it will be crucial to conduct 
extensive tests with different models to identify the most 
suitable option. Additionally, fine-tuning an embedding 
model specifically for PUCE’s data and context could be 
explored.   

To address the bottleneck caused by simultaneous queries, 
strategies such as deploying additional GPU servers, 
distributing the load across multiple system instances, and 
employing techniques like asynchronous response 
generation will be evaluated. Although reduced in RAG, 
the phenomenon of model hallucinations remains a critical 
challenge. Efforts will be made to mitigate these incidents 
by adjusting the prompt generation pipeline, improving 
data curation in the vector database, and potentially 
modifying the LLM itself.   

The Flask-based application must evolve into a more 
robust, intuitive interface capable of handling multiple 
users simultaneously. This includes improvements in user 
experience, such as faster loading times and clear error 
messages for out-of-scope queries. A continuous 
monitoring system that automatically logs reported 
incidents and system performance metrics is also 
necessary. This monitoring will provide valuable data for 
future iterations and enable more agile problem diagnostics 
as they arise.   

Finally, once the initial improvements are implemented, the 
system should undergo testing in a limited production 
environment to evaluate its performance in real-world 
scenarios and gather feedback from end users. These 
actions will help consolidate the system’s effectiveness and 
reliability in a practical and scalable setting.   
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