Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


Philosophy and Cybernetics: Questions and Issues
Thomas Marlowe, Fr. Joseph R. Laracy
(pages: 1-23)

Reconceiving Cybernetics in Light of Thomistic Realism
John T. Laracy, Fr. Joseph R. Laracy
(pages: 24-39)

Nascent Cybernetics, Humanism, and Some Scientistic Challenges
Zachary M. Mabee
(pages: 40-52)

Kant, Cybernetics, and Cybersecurity: Integration and Secure Computation
Jon K. Burmeister, Ziyuan Meng
(pages: 53-78)

Interplay Between Cybernetics and Philosophy as an Essential Condition for Learning
Maria Jakubik
(pages: 79-97)

Towards a General Theory of Change: A Cybernetic and Philosophical Understanding
Gianfranco Minati
(pages: 98-109)

Artificial Intelligence and Human Intellect
Víctor Velarde-Mayol
(pages: 110-127)

The Philosophy of Cybernetics
Jeremy Horne
(pages: 128-159)

Cybernetics and Philosophy in a Translation of Oedipus the King and Its Performance
Ekaterini Nikolarea
(pages: 160-190)

Linguistic Philosophy of Cyberspace
Rusudan Makhachashvili, Ivan Semenist
(pages: 191-207)

Systems Philosophy and Cybernetics
Nagib Callaos
(pages: 208-284)


 

Abstracts

 


ABSTRACT


Educational Technology for Laboratory Experiments in Nuclear Physics and Related Sciences

Gustavo Lazarte, Kouichi Julian Andres Cruz, Alejandra Lucia Perez Lucero, Norma Adriana Chautemps, Walter Miguel Keil


In this work, we present a prototype of a Nuclear Radiation Counter simulator, targeted to laboratories teaching Nuclear Physics and related sciences, both in universities and high schools. Its usage is also possible in research centers, for personnel ramp up and training. This equipment simulates data based on real experiments for the elaboration of representative characteristic curves corresponding to different radioactive sources, allowing to experiment without manipulating real radioactive elements. By incorporating this simulator in the multidisciplinary teaching and learning processes in STEM fields, it is possible to run these tests in a simple manner using non-radioactive materials. This, in turn, eliminates the risks inherent to the manipulation of radioactive sources, and reduces the costs and complexity of doing these experiments. Doing experiments allows theoretical contents to be applied in practical situations that lead to involvement in the research, interpretation, integration and communication processes of the obtained results. Simulating the experiments enables to obtain the same experiences for both the student and the professor, especially in situations where it would be significantly more difficult to do the real experiment. This will facilitate sharing knowledge of Nuclear Physics beyond the local scope of the university.

Full Text