Constraint Programming as an Al Option

Russ ABBOTT
Department of Computer Science
California State University, Los Angeles
Los Angeles, California 90032
Email: rabbott@calstatela.edu

Jun Soo LIM
Department of Computer Science
California State University, Los Angeles
Los Angeles, California 90032
Email: jlim34 @calstatela.edu

ABSTRACT!

We examine the history of Artificial Intelligence, from
its audacious beginnings to the current day. We argue that
constraint programming (a) is the rightful heir and modern-
day descendent of that early work and (b) offers a more
stable and reliable platform for AI than deep machine
learning.

We offer a tutorial on constraint programming solvers
that should be accessible to most software developers.
We show how constraint programming works, how to
implement constraint programming in Python, and how
to integrate a Python constraint-programming solver with
other Python code.

1. INTRODUCTION

Symbolic artificial intelligence. The birth announcement
for Artificial Intelligence took the form of a workshop
proposal. The proposal predicted that every aspect of
learning—or any other feature of intelligence—can in
principle be so precisely described that a machine can be
made to simulate it.[20]

At the workshop, held in 1956, Newell and Simon
claimed that their Logic Theorist not only took a giant
step toward that goal but even solved the mind-body
problem.[33] A year later Simon doubled-down.

[T]here are now machines that can think, that
can learn, and that can create. Moreover, their
ability to do these things is going to increase
rapidly until—in a visible future—the range of
problems they can handle will be coextensive
with the range to which the human mind has been

applied.[38]

1 Acknowledgement: We would like to express our deeply felt grateful-
ness to Professor Raj Pamula and Mohammad Pourhomayoun for their
comprehensive and detailed peer-reviewing of this document.

14 SYSTEMICS, CYBERNETICS AND INFORMATICS

VOLUME 19 - NUMBER 3 - YEAR 2021

Perhaps not unexpectedly, such extreme optimism about
what is now known as symbolic Al faded into the gloom
of a long Al winter.

Deep learning. But winter was followed by spring and
the green shoots of (a) expert systems, which came and
went relatively quickly, and more promisingly (b) (non-
symbolic) deep neural networks. Andrew Ng said of that
development,

Just as electricity transformed almost everything

100 years ago, today I have a hard time thinking

of an industry that won’t be transformed by

AL[28]

Deep learning has achieved extraordinary success in
fields such as image captioning and natural language trans-
lation.[17] But other than its remarkable achievements in
game-playing via reinforcement learning[37], it’s triumphs
have often been superficial. For example, deep neural nets

are surprisingly susceptible to what are known
as adversarial attacks. Small perturbations that
are (virtually) imperceptible to humans can cause
a neural network to completely change its pre-
diction: a correctly classified image of a school
bus is reclassified as an ostrich. Even worse, the
classifiers report high confidence in these wrong
predictions.[1]

We do not argue that work in deep neural nets is trivial.
But we suggest that many deep learning systems learn little
more than surface patterns. The patterns may be both subtle
and complex, but they are surface patterns nevertheless.

Lacker[24] elicits many examples of such superficial
(but sophisticated) patterns from GPT-3[6], a highly ac-
claimed natural language system. In one, GPT-3 offers to
read to its interlocutor his latest email. The problem is that
GPT-3 has no access to that person’s email—and doesn’t
“know” that without access it can’t read the email.

Both the conversational interaction and the made-up
email sound plausible and natural. In reality, each consists

ISSN: 1690-4524

bmsr2

of words strung together based simply on co-occurrences
that GPT-3 found in the billions upon billions of word
sequences it had scanned. Although what GPT-3 produces
sounds like coherent English, it’s all surface patterns with
no underlying semantics.

Recent work[18] (see [8] for a popular discussion)

suggests that much of the success of deep learning, at least
when applied to image categorization, derives from the ten-
dency of deep learning systems to focus on textures—the
ultimate surface feature—rather than shapes. This insight
offers an explanation for some of deep learning’s brittleness
and superficiality—along with possible mitigation strate-
gies.
The Holy Grail: constraint programming. In the mean-
time, work on symbolic Al continued. Constraint pro-
gramming was born in the 1980s as an outgrowth of the
interest in logic programming triggered by the Japanese
Fifth Generation initiative.[36] Logic Programming led
to Constraint Logic Programming, which evolved into
Constraint Programming. (A familiar example is the n-
queens problem: place n queens on an n x n chess board so
that no queen threatens any other. Constraint programming
also has many practical applications.)

In 1997, Eugene Frueder characterized constraint pro-
gramming as the Holy Grail of computer science: the user
simply states the problem and the computer solves it.[10]
Software that solves constraint programming problems is
known as a solver. Solver technology has many desirable
properties.

o Solutions found by constraint programming solvers
actually solve the given problem. There is no issue of
how “confident” the solver is in the solutions it finds.

e One can understand how the solver arrived at the
solution. This contrasts with the frustrating feature of
neural nets that the solutions they find are generally
hidden within a maze of parameters, unintelligible to
human beings.

¢ The structure and limits of constraint programming
are well understood: there will be no grand disappoint-
ments like those that followed the birth of Al—unless
quantum computing turns out to be a bust.

¢ Constraint programming is closely related to com-
putational complexity, which provides a well-studied
theoretical framework.

o There will be no surprises such as adversarial images.

« Solver technology is easy to characterize. It is an exer-
cise in search: find values for uninstantiated variables
that satisfy the constraints.

« Improvements are generally incremental and consist
primarily of new heuristics and better search strate-
gies. For example, in the n-queens problem one can
propagate solution steps by marking as unavailable
board squares that are threatened by newly placed
pieces. This reduces search times. We will see ex-
ample heuristics below.

ISSN: 1690-4524

Constraint programming solvers are now available in
multiple forms. MiniZinc[4 1] allows users to express con-
straints in what is essentially executable predicate calculus.

Solvers are also available as package add-ons to many
programming languages: Choco[31] and JaCoP[23] (two
Java libraries), OscaR/CBLS[29] and Yuck[43] (two Scala
libraries), and Google’s OR-tools[21] (a collection of C++
libraries, which sport Python, Java, and .NET front ends).

In the systems just mentioned, the solver is a black box.
One defines a problem, either directly in predicate calculus
or in the host language, and then asks the solver to solve
1t.

This can be frustrating for those who want more insight
into the internal workings of the solvers. Significantly more
insight is available when working either (a) in a system
like Picat[45], a language that combines features of logic
programming and imperative programming, or (b) with
Prolog (say either SICStus Prolog[7] or SWI Prolog[39])
to which a Finite Domain package has been added. But
these options are accessible only to those with a logic
programming background.

Shallow embeddings. Solver capabilities may be imple-
mented directly in a host language and made available
to programs in that language.[22, 20] Recent examples
include Kanren[32], a Python embedding, and Muli[l],
a Java embedding.

Most shallow embeddings have well-defined APIs; but
like libraries, their inner workings are not visible. Kanren
is open source, but it offers no implementation documen-
tation. The description of the Muli virtual machine[10] is
quite technical.

Back to basics. This brings us to our goal for the rest of
this paper: to offer an under-the-covers tutorial about how
an embeddable solver works.

One can think of Prolog as the skeleton of a constraint
satisfaction solver. Consequently, we focus on Prolog as
a basic paradigmatic solver. We describe Pylog, a Python
shallow embedding of Prolog’s core capabilities.

Our primary focus will be on helping readers understand
how Prolog’s two fundamental features, backtracking and
logic variables, can be implemented simply and cleanly in
Python. We also show how two common heuristics can be
added.

Pylog should be accessible to anyone reasonably fluent
in Python. In addition, the techniques we use are easily
transferred to many other languages.

We stress simply and cleanly. An advantage we have
over earlier Prolog embeddings is Python generators. With-
out generators, one is pushed to more complex implemen-
tations, such as continuation passing[3] or monads[35].
Generators, which are now widespread[19], eliminate such
complexity.

We did not invent the use of generators for implementing
backtracking; it has a nearly two-decade history: [4, 5, 12,

, 27,40, 34,9, 25]. We would like especially to thank Ian
Piumarta[30]; Pylog began as a fork of his efforts. We build

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 3 - YEAR 2021 15

s wWN =

OO~NDOTHS WN -

o
N = O

on this record and offer a cleanly coded, well-explained,
and fully operational solver.

2. SOLVER BASICS AND HEURISTICS

As an example problem we will use the computation of
a transversal. Given a sequence of sets, a transversal is a
non-repeating sequence of elements with the property that
the n* element of the traversal belongs to the n set in the
sequence. For example, the set sequence {1, 2, 3}, {1, 2,
4}, {1} has three transversals: [2, 4, 1], [3, 2, 1], and [3,
4, 1].

This problem can be solved with a simple depth-first

search. Here’s a high level description.

o Look for transversal elements from left to right.

o Select an element from the first set and (tentatively)
assign that as the first element of the transversal.

o Recursively look for a transversal for the rest of the
sets—being sure not to reuse any already selected
elements.

« If, at any point, we cannot proceed, say because we
have reached a set all of whose elements have already
been used, go back to an earlier set, select a different
element from that set, and proceed forward.

Following are (a) a utility function (Listing 1) and then

(b) mmvsl_dfs (Listing 2), the solver. (Please pardon our
Python style deficiencies. The column width and page limit
compelled compromises.)

unassigned = ' '

def uninstantiated indices(transversal):
" Find indices of uninstantiated components.
return [indx for indx in range(len(transversal))
if transversal[indx] is unassigned]

Listing 1. uninstantiated_indices

def tnvsl_ dfs(sets, tnvsl):
remaining _indices = uninstantiated _indices(tnvsl)
if not remaining indices: return tnvsl

nxt_indx = min(remaining_indices)
for elmt in sets[nxt_indx]:
if elmt not in tnvsl:
new _tnvsl = tnvsl [:nxt_indx] \
+ (elmt,) \

+ tnvsl[nxt_indx+1:]
full _tnvsl = tnvsl_dfs(sets, new_tnvsl)
if full _tnvsl is not None: return full tnvsl

Listing 2. tnvsl_dfs
Here’s an explanation of the search engine in some
detail.

o The function tnvsl_dfs takes two parameters:

1) sets: a list of sets
2) tnvsl: a tuple with as many positions as there are
sets, but initialized to undefined.

o line 2. remaining_indices is a list of the indices of
uninstantiated elements of tmvsl. Initially this will be
all of them. Since tnvsl_dfs generates values from left
to right, the first element of remaining_indices will
always be the leftmost undefined index position.

16 SYSTEMICS, CYBERNETICS AND INFORMATICS

VOLUME 19 - NUMBER 3 - YEAR 2021

o line 3. If remaining_indices is null, we have a com-
plete transversal. Return it. Otherwise, go on to line
5.

e line 5. Set nxt_indx to the first undefined index
position.

e line 6. Begin a loop that looks at the elements of
sets[nxt_indx], the set at position nxt_indx. We want
an element from that set to represent it in the transver-
sal.

o line 7. If the currently selected elmt of sets[nxt_indx]
is not already in nvsl:

1) lines 8-10. Put elmt at position nxt_indx.

2) line 11. Call tnvsl_dfs recursively to complete the
transversal, passing new_tnvsl, the extended tnvsl.
Assign the returned result to full_tnvsl.

3) line 12. If full_tnvsl is not None, we have found
a transversal. Return it to the caller. If full_tnvsi is
None, the elmt we selected from sets[nxt_indx] did
not lead to a complete transversal. Return to line 6
to select another element from sets/nxt_indx].

This is standard depth first search. tnvsi_dfs will either
find the first transversal, if there are any, or return None.
Here’s a trace of the recursive calls.

1| sets: [{1,2,3}, {1,2,4}, {1}], tnvsl: (_,_._)

2 sets: [{1,2,3}, {1,2,4}, {1}], tnvsl: (1, _,)

3 sets: [{1,2,3}, {1,2, } {1}], tnvsl: (1,2,)
4 sets: [{1,2,3}, {1,2,4}, {1}], tnvsl: (1,4,)
5 sets: [{1,2,3}, {1,2, 4} {1}], tnvsl: (2, _,)

6 sets: [{1,2,3}, {1,2,4}, {1}], tnvsl: (2,1,)
7 sets: [{1,2,3}, {1,2,4}, {1}], tnvsl: (2,4,)
8 sets: [{1,2,3}, {1,2,4}, {1}], tnvsl: (2,4,1)

Listing 3. tnvsi_dfs trace

o line 1. Initially (and on each call) the sets are

{1,2,3},{1,2,4}, {1}

Initially tnvsl is completely undefined: (_, _, _)

e line 2. 1 is selected as the first element of tnvsl.

e line 3. 2 is selected as the second element.

e line 4. But now we are stuck. Since / is already
in tnvsl, we can’t use it as the third element. Since
depth first search is “blind,” instead of selecting an
alternative for the first set, it backs up to the most
recent selection and selects 4 to represent the second
set.

o lines 5. Of course, that doesn’t solve the problem.
So we back up again. Since we have now tried all
elements of the second set, we back up to the first set
and select 2.

o lines 6. Going forward, we select / for the second set.

o lines 7. Again, we cannot use / for the third set. So
we back up and select 4 to represent the second set.
(We can’t use 2 since it is already taken.)

o lines 8. Finally, we can select / as the third element
of tnvsl, and we’re done.

How recursively nested for-loops implement choice-
points and backtracking. This simple depth-first search
appears to incorporate backtracking. In fact, there is no

ISSN: 1690-4524

backtracking. Recursively nested for-loops produce a back-
tracking effect.

It is common to use the term choicepoint for a place in
a program where (a) multiple choices are possible and (b)
one wants to try them all, if necessary. Our simple solver
implements choicepoints via (recursively) nested for-loops.

The for-loop on line 6 generates options until either
we find one for which the remainder of the program
completes the traversal, or, if the options available have
been exhausted, the program fails out of that recursive call
and “backtracks” to a choicepoint at a higher/earlier level
of the recursion.

In this context, backtracking means popping an element
from the call stack and restoring the program at the next
higher level. As with any function call, the calling function
continues at the point after the function call—in this case,
line 12.

If the function called on line 11 returns a complete
transversal, we return it to the next higher level, which
continues to return it up the stack until we reach the
original caller.

If what was returned on line 11 was not a complete
transversal, we go around the for-loop again, bind element
to the next member of sets/nxt_indx], and try again.

The call stack serves as a record of earlier, pending
choicepoints. We resume them in reverse order as needed.
That’s exactly what depth-first search is all about.

We now turn to two heuristics that improve solver effi-
ciency.
Propagate. When we select an element for frvs we can
propagate that selection by removing that element from the
remaining sets. We can do that with the following changes.
(Of course, a real solver would not hard-code heuristics.
This is just to show how it works.)

1) Before line 11, insert this line.

1

new_sets = [set — {elmt} for set in sets]

Then replace sets with new_sets in line 11. This will
remove elmt from the remaining sets.
2) Before line 5, insert

-

2 return None

if any(not sets[idx] for idx in remaining_indices):

This tests whether any of our unrepresented sets
are now empty. If so, we can’t continue. (Recall
that Python style recommends treating a set as a
boolean when testing for emptiness. An empty set is
considered False.)
Because the empty sets in lines 2 and 4 of the trace
trigger backtracking, the execution takes 6 steps rather than
8.

1| sets: [{1,2,3}, {1,2,4}, {1}], tnvsl: (_,_,)
2 sets: [{2,3}, {2,4}, set()], tnvsl: (1, _,)
3 sets: [{1,3}, {1,4}, {1}], tnvsl: (2, ,)

4 sets: [{3}, {4}, set()], tnvsl: (2,1)

5 sets: [{1,3}, {1}, {1}], tnvsl: (2,4,)

6 sets: [{3}, set(), set()], tnvsl: (2,4,1)

Listing 4. tnvsl_dfs_prop trace

ISSN: 1690-4524

S WN =

SYSTEMICS, CYBERNETICS AND INFORMATICS

The Propagate heuristic is a partial implementation
of the all-different constraint. It applies to this problem
because we know that the transversal elements must all be
distinct.

Smallest first. When selecting which tnvsl index to fill next,
pick the position associated with the smallest remaining
set.

In the original code (Listing 2), replace line 5 with

nxt_indx = min(remaining_indices ,
key=lambda indx: len(sets[indx]))

The resulting trace (Listing 5) is only 4 lines. (At line
3, the first two sets are the same size. min selects the first.)

sets: [{1,2,3}, {1,2,4}, {1}], tnvsl: (_,_,)
sets: [{1,2,3}, {1,2,4}, {1}], tnvsl: (_,_,1)
sets: [{1,2,3}, {1,2,4}, {1}], tnvsl: (2, _,1)
sets: [{1,2,3}, {1,2,4}, {1}, tnvsl: (2,4,1)

Listing 5. tnvsl_dfs_smallest trace
One could apply both heuristics. Since smallest first
eliminated backtracking, adding the propagate heuristic
makes no effective difference. But, one can watch the sets
shrink.

1| sets: [{1,2,3}, {1,2,4}, {1}], tnvsl: (_, .,)
2 sets: [{2,3}, {2,4}, {}]., tnvsl: (_,_,1)

3 sets: [{3}, {4}, {}], tnvsl: (2, _,1)

4 sets: [{3}, {}, {}, tnvsl: (2,4,1)

Listing 6. tnvsl_dfs_both_heuristics trace

This concludes our discussion of a basic depth-first
solver and two useful heuristics. We have yet to mention
generators.

3. GENERATORS

In our previous examples, we have been happy to stop
once we found a transversal, any transversal. But what
if the problem were a bit harder and we were looking
for a transversal whose elements added to a given sum.
The solvers we have seen so far wouldn’t help—unless we
added the new constraint to the solver itself. But we don’t
want to do that. We want to keep the transversal solvers
independent of other constraints. (Adding heuristics don’t
violate this principle. Heuristics only make solvers more
efficient.)

One approach would be to modify the solver to find and
return all transversals. We could then select the one(s) that
satisfied our additional constraints. But what if there were
many transversals? Generating them all before looking at
any of them would waste a colossal amount of time.

We need a solver than can return results while keeping
track of where it is with respect to its choicepoints so
that it can continue from there if necessary. That’s what
a generator does.

Listing 7 shows a generator version of our solver,
including both heuristics. When called as on lines 22-23,
it produces the trace in Listing 8.

Some comments on Listing 7.

VOLUME 19 - NUMBER 3 - YEAR 2021 17

OO~NDOTHA WN -

def tnvsl _dfs_gen(sets, tnvsl):
remaining _indices = uninstantiated indices(tnvsl)
if not remaining indices: yield tnvsl
else:
if any(not sets[i] for i in remaining_indices):

return None

nxt_indx = min(remaining_indices ,
key=lambda indx: len(sets[indx]))
for elmt in sets[nxt_indx]:
if elmt not in tnvsl:
new _tnvsl = tnvsl [:nxt_indx] \
+ (elmt,) \
+ tnvsl[nxt_indx+1:]
new_ sets = [set — {elmt} for set in sets]
for full _tnvsl in tnvsl_dfs gen(new_sets,
new _tnvsl):
yield full _tnvsl

for tnvsl in tnvsl_dfs_gen(sets, ('
print('=> ', tnvsl)

7|’| ' |)):

—

++
N B
++
=

6
6

w N

Listing 7. tnvsl_dfs_gen

Listing 10. tnvsl_dfs_gen trace

We generated transversals until we found one whose ele-
ments summed to 6. Then we stopped.

4. LOGIC VARIABLES

This section discusses logic variables and their realiza-
tion.

A. Instantiation

Logic variables are either instantiated, i.e., have a value,
or uninstantiated. The instantiation operation is called
unify. unify is a generator, but it does not yield a value.
Consider the code segment in Listing 11.

QOVWO~NOOTHAWN

=

sets: [{1,2,3}, {1,2,4}, {1}], tnvsl: (_, ,)
sets: [{2,3}, {2,4}, {}]., tnvsl: (_,_,1)
sets: [{3}, {4}, {}], tnvsl: (2, _,1)
sets: [{3}, {}, {}], tnvsl: (2,4,1)
= (2, 4, 1)
sets: [{2}, {2,4}, {}]., tnvsl: (3,_,1)
sets: [{}, {4}, {}], tnvsl: (3,2,1)
= (3, 2, 1)
sets: [{2}, {2}, {}], tnvsl: (3,4,1)
= (3, 4, 1)

OO ~NOOTHWN -

A = Var()

print(A) #= 1

for _ in unify (A, 'abc'):
print (A) # => abc
This unify fails. Its body never runs.
for _ in unify (A 'def'):

print (A) # Never executed
print (A) # => abc

print(A) #= _1

DOTHAE WN -

Listing 8. tnvsl_dfs_gen trace

o The newly added else on line 5 is necessary. Previ-
ously, if there were no remaining_indices, we returned
tnvsl. That was the end of execution for this recur-
sive call. But if we yield instead of return, when
tnvsl_dfs_gen is asked for more results, it continues
with the line after the yield. But if have already
found a transversal, we don’t want to continue. The
else divides the code into two mutually exclusive
components. return had done that implicitly.

e Lines 17-20 call tnvsl_dfs_gen recursively and ask
for all transversals that can be constructed from the
current state. Each one is then yielded. No need to
exclude None. mvsl_dfs_gen will yield only complete
transversals.

Lines 17-20 can be replaced by this single line.

yield from tnvsl_dfs_ gen(new_sets, new_tnvsl)

Let’s use tnvsl_dfs_gen (Listing 7) to find a transversal
whose elements sum to, say, 6.

n==6

for tnvsl in tnvsl_dfs gen(sets, ('_',' ',' "')):
sum_string = ' + '.join(str(i) for i in tnvsl)
equals = '="' if sum(tnvsl) = n else 'l='
print (f'{sum_string} {equals} {n}"')
if sum(tnvsl) = n: break

Listing 9. running tnvsl_dfs_gen

The output (without trace) will be as follows.

18 SYSTEMICS, CYBERNETICS AND INFORMATICS

VOLUME 19 - NUMBER 3 - YEAR 2021

Listing 11. Unification example

e line 1. A is a normal Python identifier. We use an
initial capital to distinguish logic variables from reg-
ular Python variables. Var is the constructor for logic
variables. After this line, A refers to an uninstantiated
logic variable object.

e line 2. When an uninstantiated logic variable is
printed, we see an internal value, which distinguishes
it from other logic variables. As the first logic variable
in this program, A’s internal value is _/.

o lines 3-8. unify A with abc. Since unify does not yield
a value, the for-loop variable is not used.

o line 4. The for-loop establishes a context for unify.
Within the for-loop body A is instantiated to abc.

o lines 6-7. Within a unify context, logic variables are
immutable. Since A already has a value, it cannot be
unified with def. The unify on line 6 fails, and the
body of that for-loop (line 7) does not execute.

o line 8, A has the same value as on line 4.

Since there is only one way to unify A with abc, the
for-loop body runs only once.

o lines 9. Leaving the unify context undoes the instan-
tiation.

B. The power of unify

unify can also identify logic variables with each other.
After two uninstantiated logic variables are unified, when-
ever either gets a value, the other gets that same value.

Unification is surprisingly straightforward. Each Var
includes a next field, which is initially None. When two
Vars are unified, the result depends on their states of
instantiation.

ISSN: 1690-4524

o If both are uninstantiated the next field of one points
to the other. It makes no difference which points to
which. A chain of linked Vars unifies all the Vars in
the chain.

o If only one is uninstantiated, the uninstantiated one
points to the other.

o If both are instantiated to the same value, they are ef-
fectively unified. unify succeeds but nothing changes.

o If both are instantiated but to different values, unify
fails.

A note on terminology. When called (as part of a for-
loop) a generator will either yield or return. When a
generator yields, it is said to succeed; the for-loop body
runs. When a generator returns, it is said to fail; the for-
loop body does not run. Instead we exit the for-loop.

We can trace the unifications in Listing 12.

1| (A, B, C, D) = (Var(), Var(), Var(), Var())
2| print(A, B, C, D) #= 1 2 3 4

3| for _ in unify (A, B):

4 for _ in unify(D, C):

5 print(A, B, C, D) #= 2 _2 _3 _3

6 for _ in unify (A, 'abc'):

7 print (A, B, C, D) # = abc abc _3 _3
8 for _ in unify (A, D):

9 print (A, B, C, D) # => abc abc abc abc
10 print (A, B, C, D) # => abc abc _3 _3
11 print(A, B, C, D) #= 2 _2 3 _3

12| print(A, B, C, D) #= 2 2 3 4

13| print (A, B, C, D) #= 1 2 3 4

Listing 12. Unification example
The first unifications, lines 3 and 4, produce the follow-
ing internal structures.

A — B
D — C M

Line 6 unifies A and ’abc’. The first step is to go to
the ends of the relevant unification chains. In this case, B
(the end of A’s unification chain) is pointed to ’abc’. Since
‘abc’ is instantiated, the arrow can only go from B to "abc’.

A = B — 'abd
D—>aCC)

Finally, line 8 unifies A with D. C (the end of D’s
unification chain) is set to point to ’abc’ (the end of A’s
unification chain).

A —= B — 'abd

T (3)
D —» C

C. A logic-variable version of tmvsl_dfs_gen

Listing 13 adapts Listing 7 for logic variables. The
strategy is for trnsvl to start as a tuple of uninstantiated
Vars, which become instantiated as the program runs.

First, an adapted uninstan_indices_Ilv returns the indices
of the uninstantiated Vars in trnsvl.

1| def uninstan_indices Iv(tnvsl):
2 return [indx for indx in range(len(tnvsl))
3 if not tnvsl[indx].is_instantiated ()]

ISSN: 1690-4524

=

OO ~NOOTH WN -

COWWO~NDOH WN

SYSTEMICS, CYBERNETICS AND INFORMATICS

Note that tnvsifindx] retrieves the indx™ tvsl element.
If it is instantiated, it represents the value associated with
the indx™ set. If not, we don’t yet have a value for the
indx™ set.

def tnvsl_dfs _gn_Iv(sets, tnvsl):
var_indxs = uninstan_indices_lv(tnvsl)

if not var_indxs:
else:
empty sets = [sets[indx].is_empty()
for indx in var_indxs]
if any(empty sets): return None

yield tnvsl

nxt _indx = min(var_indxs,
key=lambda indx:
PyList ([tnvsl[i]

len(sets[indx]))
used values =

for i in range(len(tnvsl))
if i not in var_indxs])
T_Var = tnvsl[nxt_indx]
for _ in member(T_Var, sets[nxt_indx]):

for _ in fails(member)(T_Var, used values):
new_sets = [set.discard(T_Var)
for set in sets]
yield from tnvsl_dfs_gn_Iv(new_sets, tnvsl)

Listing 13. dfs-with-gen-and-logic-variables
Some comments on Listing 13. (We reformatted some
of the lines and changed some of the names from fnvsl_-
dfs_gen (Listing 7) so that the program will fit the width
of a column.)

o line 6. The parameter sets is a list of PySets. These are
logic variable versions of sets. An is_empty method
is defined for them.

o lines 12-14. used_values are the values of the instan-
tiated tmvs/ elements.

e line 15. T_Var is the element at the nxt_indx™ position
of tnvsl. Since nxt_indx was selected from the unin-
stantiated variables, 7_Var is an uninstantited Var.

e line 16. member successively unifies its first argu-
ment with the elements of its second argument. It’s
equivalent to for T Var in sets[nxt_indx] but using
unification.

o line 17. fails takes a predicate as its argument. It con-
verts the predicate to its negation. So fails(member)
succeeds if and only if member fails.

o line 18. PySets have a discard method that returns a
copy of the PySet without the argument.

When run, we get the same result as before—except that

the uninstantiated transversal variables appear as we saw
above.

sets: [{1,2,3}, {1,2,4}, {1}], tnvsl: (_1, 2, _3)
sets: [{2,3}, {2,4}, {}]., tnvsl: (_1, _2, 1)
sets: [{3}, {4}, {}], tnvsl: (2, _2, 1)
sets: [{3}, {}, {}], tnvsl: (2, 4, 1)

= (2, 4, 1)
sets: [{2}, {2,4}, {}], tnvsl: (3, _2, 1)
sets: [{}, {4}, {}], tnvsl: (3, 2, 1)
= (3, 2, 1)
sets: [{2}, {2}, {}], tnvsl: (3, 4, 1)
= (3, 4, 1)

The following logic variable version of Listing 9 will
run tnvsl_dfs_gen_lv and produce the same result.

VOLUME 19 - NUMBER 3 - YEAR 2021 19

OO~NDOTHS WN -

(A, B, C) = (Var(), Var(), Var())

Py Sets = [PySet(set) for set in sets]

PyValue creates a logic variable constant.

N = PyValue(6)

for _ in tnvsl_dfs_gn_Iv(Py_Sets, (A, B, C)):
sum_string = ' 4+ '.join(str(i) for i in (A, B, C))
equals = '="' if A+ B+ C =N else 'l="

print (f'{sum_string} {equals} {N}'")
if A+ B + C = N: break

Line 1 created three logic variables, A, B, and C. Line 5
passed them to tnvsi_dfs_gn_Iv. Each time a transversal is
found, the body of the for-loop is executed with the values
to which A, B, and C have been instantiated.

The preceding offers some sense of what one can do
with logic variables. The next section really puts them to
work.

5. ALOGIC PUZZLE

At this point, one might expect a complex logic puzzle
like the Zebra Puzzle[44]. Instead we present a similar but
much simpler puzzle. The techniques are the same, but the
following puzzle[4] fits the available space better.

o There are four students: Ada, Emmy, Lynn, and Marie.
Each has a scholarship and a major. No two students
have the same scholarship or the same major.

o The scholarships and majors are $25,000, $30,000,
$35,000 and $40,000 and Bio, CS, Math, and Phys.

From the clues listed below, determine which student
studies which major and the amount of each student’s
scholarship.

We create a class Stdnt. Each instances has two fields:
name and major. (We do not keep track of the stu-
dents’ scholarships!) For example, a Stdnt object that
represents Ada studying Phys is constructed like this
Stdnt(name="Ada’, major="Phys’) and printed as Ada/-
Phys.

Objects are not always fully instantiated. Missing infor-
mation is represented by an underscore (_). An object that
represents some person studying Bio would look like this
_/Bio. It would be constructed as: Stdnt(major="Bio’).

Our world consists of a list of Stdnt objects with
scholarships of increasing size. (Although we don’t record
scholarship amounts, we know their relative sizes!) This list
is passed to the clues and will become fully instantiated as
the answer.

A number of utility methods are defined.

o is_contiguous_in(listl, list2) unifies the elements of
list] with those of list2 if the elements of list] appear
together in /list2 in the same order as in [listl. On
backtracking, yields all possible matches.
Unification fails between objects with instantiated
fields having different values. For example Marie/-
Physics would not unify with _/Math.

But Marie/_ would unify with _/Phys. After unifi-
cation, the two objects would each have both fields
identically instantiated: Mia/Physics.

20 SYSTEMICS, CYBERNETICS AND INFORMATICS

VOLUME 19 - NUMBER 3 - YEAR 2021

o is_subseq(listl, list2) is the same as is_contiguous_in,
but the elements of lisz/ may appear in list2 with gaps
between them.

o member(student, list) unifies student, successively,
with eligible elements of list, as in the transversal
problem.

Listing 14 contains the clues. Listing 15 contains a list
of the clues followed by the search engine on lines 3-7.
run_clue (line 6) runs the clues. Although not shown, it
also applies the all-different heuristic to prevent the same
field value from being used more than once.

Listing 16 shows the sequence of clue executions, in-
cluding backtracking. Each line shows the then-current
list of partially instantiated students. At line 42 we asked
the search engine to look for additional solutions. (There
weren’t any.) The total compute time on a 3-year-old laptop
was 0.01 sec.

6. CONCLUSION

We explained how a simple solver for constraint prob-
lems works and how solvers can be integrated into Python
programs.

It’s difficult to imagine a neural net (of any depth!)
solving the problems discussed here—although preliminary
work toward that end has been reported. [42, 2, 13]

Pylog code at: github.com/RussAbbott/pylog/tree/master/pylog.

REFERENCES

[1] Naveed Akhtar and Ajmal Mian. “Threat of adver-
sarial attacks on deep learning in computer vision:
A survey”. In: IEEE Access 6 (2018), pp. 14410—
14430.

[2] Kay R Amel. “From shallow to deep interactions
between knowledge representation, reasoning and
machine learning”. In: Proceedings 13th Interna-
tional Conference Scala Uncertainity Mgmt (SUM
2019), Compiegne, LNCS. 2019, pp. 16-18.

[3] Nada Amin, William E Byrd, and Tiark
Rompf. “Lightweight Functional Logic Meta-
Programming”. In: Asian Symposium on

Programming Languages and Systems. Springer.
2019, pp. 225-243.

[4] S Berger. Pythologic: Prolog syntax in Python. http:
//code.activestate.com/recipes/. 2004.

[5] Carl Friedrich Bolz. A Prolog Interpreter in Python.
http://citeseerx.ist.psu.edu/viewdoc/download ?doi=
10.1.1.121.8625 &rep=rep1&type=pdf. 2007.

[6] Tom B. Brown et al. Language Models are Few-Shot
Learners. 2020. arXiv: 2005.14165 [cs.CL].

[7] Mats Carlsson. SICStus Prolog User’s Manual v4.3.
BoD-Books on Demand, 2014.

[8] Jordana Cepelewicz. “Where We See Shapes, Al
Sees Textures”. In: Quanta Magazine (2020).

[9] BKM Cesar. Prol: a minimal, inefficient Prolog
interpreter in Python. https :// gist. github.com/
brunokim/. 2019.

ISSN: 1690-4524

https://github.com/RussAbbott/pylog/tree/master/pylog
http://code.activestate.com/recipes/
http://code.activestate.com/recipes/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.8625&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.8625&rep=rep1&type=pdf
https://arxiv.org/abs/2005.14165
https://gist.github.com/brunokim/
https://gist.github.com/brunokim/

~NoOobhWwWN

OCO~NOOTHA WN -

yield from is_contiguous_in([Stdnt(name='Lynn'), K Var(), 6 Stdnt(name='Marie')], Stdnts)

Stdnt(name='Ada')], Stdnts)

Listing 14. The clues

1| def clue_1(self, Stdnts):
2 """ The student who studies Phys gets a smaller scholarship than Emmy.
3 yield from is_subseq ([Stdnt(major='Phys'), K Stdnt(name='Emmy')], Stdnts)
4
5| def clue_2(self, Stdnts):
6 """ Emmy studies either Math or Bio.
7 # Create Major as a local logic variable.
8 Major = Var()
9 for _ in member(Stdnt(name='Emmy', major=Major),Stdnts):
10 yield from member(Major, PyList(['Math', 'Bio']))
11
12| def clue_3(self, Stdnts):
13 """ The Stdnt who studies CS has a $5,000 larger scholarship than Lynn.
14 yield from is_contiguous_in([Stdnt(name='Lynn'), Stdnt(major='CS')], Stdnts)
15
16| def clue 4(self, Stdnts):
17 """ Marie gets $10,000 more than Lynn.
18
19
20| def clue_5(self, Stdnts):
21 """ Ada has a larger scholarship than the Stdnt who studies Bio.
22 yield from is_subseq([Stdnt(major='Bio"'),
self.clues = [clue_1,clue_2,clue_3,clue_4 , clue_ 5]
def run_all _clues(self, clue_number):
if clue_number >= len(self.clues): yield
else:
for _ in self.run_clue(clue_number):
yield from self.run_all_clues(clue_number + 1)
Listing 15. search engine
Initially: / , /. /. /_
Clue 1: _/Phys, Emmy/ ., /
Clue 2: _/Phys, Emmy/Math, / , /
Clue 3: _/Phys, Emmy/Math, Lynn/_, /CS
Clue 2: _/Phys, Emmy/Bio, / , /
Clue 3: _/Phys, Emmy/Bio, Lynn/ , /CS
Clue 1: _/Phys, / , Emmy/ , _/
Clue 2: _/Phys, _/ , Emmy/Math, _/
Clue 3: Lynn/Phys, _/CS, Emmy/Math, _/
Clue 2: /Phys, / , Emmy/Bio, _/
Clue 3: Lynn/Phys, _/CS, Emmy/Bio, _/
Clue 1: _/Phys, / , _/ ., Emmy/_
Clue 2: _/Phys, _/ , _/_, Emmy/Math
Clue 3: Lynn/Phys, _/CS, _/ , Emmy/Math
Clue 4: Lynn/Phys, /CS, Marie/_, Emmy/Math
Clue 3: _/Phys, Lynn/_, _/CS, Emmy/Math
Clue 2: _/Phys, _/ , _/_, Emmy/Bio
Clue 3: Lynn/Phys, _/CS, _/ , Emmy/Bio
Clue 4: Lynn/Phys, _/CS, Marie/_, Emmy/Bio
Clue 3: _/Phys, Lynn/_, _/CS, Emmy/Bio
Clue 1: _/ , _/Phys, Emmy/ , /
Clue 2: _/ , _/Phys, Emmy/Math, _/
Clue 2: _/ , _/Phys, Emmy/Bio, _/
Clue 1: / , /Phys, / , Emmy/_
Clue 2: / , /Phys, / , Emmy/Math
Clue 3: _/_, Lynn/Phys, _/CS, Emmy/Math
Clue 2: _/ , _/Phys, _/ , Emmy/Bio
Clue 3: _/_, Lynn/Phys, _/CS, Emmy/Bio
Clue 1: / , _/_, _/Phys, Emmy/_
Clue 2: / , / , _/Phys, Emmy/Math
Clue 3: Lynn/_, _/CS, _/Phys, Emmy/Math
Clue 4: Lynn/_, _/CS, Marie/Phys, Emmy/Math
Clue 5: Lynn/Bio, Ada/CS, Marie/Phys, Emmy/Math
After 33 rule applications,
Solution:
1. Lynn/Bio ($25,000 scholarship)
2. Ada/CS ($30,000 scholarship)
3. Marie/Phys ($35,000 scholarship)
4. Emmy/Math ($40,000 scholarship)
More? (y, or n)? >y
Clue 2: / , _/_, _/Phys, Emmy/Bio
Clue 3: Lynn/_, /CS, _/Phys, Emmy/Bio
Clue 4: Lynn/_, _/CS, Marie/Phys, Emmy/Bio
Listing 16. Trace of the scholarship problem
ISSN: 1690-4524

SYSTEMICS, CYBERNETICS AND INFORMATICS

(10]

(1]

[12]

(13]

(14]

(15]
(16]

(17]

(18]

[19]

(20]

(21]

JC Dageforde and H Kuchen. “A compiler and vir-
tual machine for constraint-logic obj-oriented pro-
gramming with Muli”. In: J of Comp Lang 53
(2019), pp. 63-78.

JC Dageforde and H Kuchen. “A constraint-logic
object-oriented language”. In: Proc 33rd Ann ACM
Symp on Applied Computing. 2018, pp. 1185-1194.
Christophe Delord. PyLog. http://cdsoft.fr/pylog/
index.html. 2009.

Didier Dubois and Henri Prade. “Towards a recon-
ciliation between reasoning and learning-A position
paper”. In: International Conference on Scalable
Uncertainty Management. Springer. 2019, pp. 153—
168.

Rainhard Findling. URL: https : / / geekoverdose .
wordpress.com/2015/10/31/solving-logic- puzzles-
in-prolog-puzzle-1-of-3/.

B Frederiksen. Pyke. http://pyke.sourceforge.net/.
2011.

Eugene C Freuder. “In pursuit of the holy grail”. In:
Constraints 2.1 (1997), pp. 57-61.

Marta Garnelo and Murray Shanahan. “Reconcil-
ing deep learning with symbolic artificial intelli-
gence: representing objects and relations”. In: Cur-
rent Opinion in Behavioral Sciences 29 (2019),
pp. 17-23.

Robert Geirhos et al. “ImageNet-trained CNNs are
biased towards texture; increasing shape bias im-
proves accuracy and robustness”. In: arXiv preprint
arXiv:1811.12231 (2018).

Generator (comp prog). https://en.wikipedia.org/
wiki/Generator_(computer_programming).

J Gibbons and N Wu. “Folding domain-specific
languages: deep and shallow embeddings (functional
pearl)”. In: Proc 19th ACM SIGPLAN Intl Conf on
Functional programming. 2014, pp. 339-347.
Google. OR Tools. https://developers.google.com/
optimization/.

VOLUME 19 - NUMBER 3 - YEAR 2021 21

http://cdsoft.fr/pylog/index.html
http://cdsoft.fr/pylog/index.html
https://geekoverdose.wordpress.com/2015/10/31/solving-logic-puzzles-in-prolog-puzzle-1-of-3/
https://geekoverdose.wordpress.com/2015/10/31/solving-logic-puzzles-in-prolog-puzzle-1-of-3/
https://geekoverdose.wordpress.com/2015/10/31/solving-logic-puzzles-in-prolog-puzzle-1-of-3/
http://pyke.sourceforge.net/
https://en.wikipedia.org/wiki/Generator_(computer_programming)
https://en.wikipedia.org/wiki/Generator_(computer_programming)
https://developers.google.com/optimization/
https://developers.google.com/optimization/

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

22

C.AR. Hoare and H. Jifeng. Unifying theories of
programming. Vol. 14. Prentice Hall Englewood
Cliffs, 1998.

K Kuchcinski and R Szymanek. “Jacop-java con-
straint programming solver”. In: CP Solvers: Model-
ing, Applications, Integration, and Standardization,
co-located with the 19th Intl Conf on Principles and
Practice of Constraint Programming. 2013.

K Lacker. Conversation with GPT-3. 2020. URL:
https://lacker.io/ai/2020/07/23/conversation - with-
gpt3.html.

Nikola M. Python Prolog Interpreter. https://github.
com/photonlines/Python-Prolog-Interpreter. 2019.
John McCarthy et al. “A Proposal for the Dartmouth
Summer Research Project on Artificial Intelligence,
Sugust 31, 1955”. In: reprinted in AI magazine 27.4
(2006), p. 12. URL: http://www-formal.stanford.edu/
jmc/history/dartmouth/dartmouth.html.

Chris Meyers. Prolog in Python. http : // www .
openbookproject. net/py4fun/prolog/prologl . html.
2015.

Andrew Ng. Al is the new electricity. O’Reilly,
2018.

Oscar/CBLS. URL: https://oscarlib.bitbucket.io/.

Ian Piumarta. Lecture notes and slides from weeks
5-7 of a course on programming paradigms. http:
//www . ritsumei . ac . jp/ ~piumarta/pl/index . html.
2017.

Charles Prud’homme and Jean-Guillaume Fages.
Choco Solver. https ://www . cril . univ - artois . fr/
CompetitionXCSP17/files/choco.pdf. 2019.
Matthew Rocklin. Kanren: Logic Programming in
Python. https://github.com/logpy/logpy/. 2019.
Stuart J Russell and Peter Norvig. Artificial
Intelligence-A Modern Approach, Third Interna-
tional Edition. 2010.

Claudio Santini. Pampy: The Pattern Matching for
Python you always dreamed of. https://github.com/
santinic/pampy. 2018.

Silvija Seres and Michael Spivey. “Embedding Pro-
log in Haskell”. In: Proceedings of the 1999 Haskell
Workshop. 1999, pp. 23-38.

Ehud Y Shapiro. “The fifth generation project—a
trip report”. In: Communications of the ACM 26.9
(1983), pp. 637-641.

David Silver et al. “A general reinforcement learning
algorithm that masters chess, shogi, and Go through
self-play”. In: Science 362.6419 (2018), pp. 1140-
1144.

HA Simon. Models of man; soc and rat. Wiley,
1957.

SWI prolog. URL: https://www.swi-prolog.org/pldoc/
doc_for?object=manual.

Jeff Thompson. Yield Prolog. http://yieldprolog.
sourceforge.net/. 2017.

SYSTEMICS, CYBERNETICS AND INFORMATICS

[41]

(42]

[43]
[44]

[45]

VOLUME 19 - NUMBER 3 - YEAR 2021

Mark Wallace. “Problem Modelling in MiniZinc”.
In: Blding Dec Sup Sys. Springer, 2020, pp. 37-47.
Hong Xu, Sven Koenig, and TK Satish Kumar.
“Towards effective deep learning for constraint sat-
isfaction problems”. In: Intl Conf on Principles
and Practice of Constraint Programming. Springer.
2018, pp. 588-597.

Yuck. URL: https://github.com/informarte/yuck.
Zebra Puzzle. https://en.wikipedia.org/wiki/Zebra_
Puzzle.

Neng-Fa Zhou, Hakan Kjellerstrand, and J Fruh-
man. Constraint solving and planning with Picat.
Springer, 2015.

ISSN: 1690-4524

https://lacker.io/ai/2020/07/23/conversation-with-gpt3.html
https://lacker.io/ai/2020/07/23/conversation-with-gpt3.html
https://github.com/photonlines/Python-Prolog-Interpreter
https://github.com/photonlines/Python-Prolog-Interpreter
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://www.openbookproject.net/py4fun/prolog/prolog1.html
http://www.openbookproject.net/py4fun/prolog/prolog1.html
https://oscarlib.bitbucket.io/
http://www.ritsumei.ac.jp/~piumarta/pl/index.html
http://www.ritsumei.ac.jp/~piumarta/pl/index.html
https://www.cril.univ-artois.fr/CompetitionXCSP17/files/choco.pdf
https://www.cril.univ-artois.fr/CompetitionXCSP17/files/choco.pdf
https://github.com/logpy/logpy/
https://github.com/santinic/pampy
https://github.com/santinic/pampy
https://www.swi-prolog.org/pldoc/doc_for?object=manual
https://www.swi-prolog.org/pldoc/doc_for?object=manual
http://yieldprolog.sourceforge.net/
http://yieldprolog.sourceforge.net/
https://github.com/informarte/yuck
https://en.wikipedia.org/wiki/Zebra_Puzzle
https://en.wikipedia.org/wiki/Zebra_Puzzle

	ZA173UP21.pdf

