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ABSTRACT 

In this paper, we present an algorithm for defect detection in glass 

products that allows us to minimize the processing time. The 

main idea is based on the reduction of the size of the image area 

to investigate by using the features of glass images. Results on a 

set of test images show that the proposed solution does not 

compromise the quality of the detection and allows to achieve an 

improvement of a factor of 7x compared to the existing solution 

under particular conditions, with the same accuracy in defect 

detection 

Keywords: Defect detection, glass production, real-time 

inspection, image processing, inspection systems. 

 

1. INTRODUCTION 

 

An inspection system for semi-finished glass production can be 

based on machine vision [1], [2], [3] and it is constituted by an 

Image Acquisition Subsystem and a Host Computer. The Image 

Acquisition Subsystem is devoted to the acquisition of the 

digitized images (frames); key components of such system are a 

LED-based illuminator, a line scan camera, and a frame grabber, 

which groups together single sequential lines captured by the 

camera into a single frame, transferring it to the Host Computer. 

The Host Computer implements defect detection and 

classification algorithms and it takes the discard decisions, 

communicating them to a Cutting and Discarding Machine [4]. 

Discard decisions are taken considering parameters glass 

production process, some of which are settled via a usable 

operator GUI [5]. 

 

The evolution of the glass production process requires both high 

accuracy in defects detection and faster production lines. The 

detection and classification of defects imposes temporal 

constraints on the system. The inspection system, in fact, works 

in pipeline, and the Image Acquisition Subsystem feeds the 

pipeline at a rate which is determined by the sampling rate of the 

line scan camera divided by the number of lines in a frame. The 

Defect Detection and Classification module must work with the 

same rate, to avoid frame loss, i.e., the sampling rate of the line 

scan camera enforces an upper bound to the processing time of 

defect detection and classification algorithms. The current 

requirement of increasing the production speed involves the use 

of line scan cameras with increased sampling rate to keep 

constant or to improve the accuracy of defects detection. 

Consequently, the increase of production speed determines the 

need to reduce the processing time of defect detection and 

classification algorithms. 

 

To reduce the processing time, we propose an algorithm that 

reduces the size of the images to be investigated by excluding 

subareas that can be assumed to not include defects. 

 

As an example, we consider the critical production of glass tubes, 

converted into pharmaceutical containers such as vials, syringes, 

and carpules.  

Due to imperfections in the raw materials used in the furnace, this 

type of glass may have defects such as knot inclusions (blobs) or 

flexible fragments called lamellae, which can cause subsequent 

problems and pharmaceutical recalls [6], [7], [8] 

The main classes of defects relevant for pharmaceutical glass 

production [1], [9] due to critical size features and their 

significant effects on the final quality of the tubes are:  

1) air lines due to the presence of air bubbles in the furnace 

which are pulled by the drawing machine; they appear as 

darker lines of long dimensions with a back illuminator, 

with the end parts thinner than the center one. This line, 

when it is too close to the tube surface, breaks and therefore 

is thinner and more difficult to detect.  

2) knot inclusion (blobs) due to imperfections in the raw 

materials used in the furnace; they appear on the tube 

surface as circular lenses, while they appear on the captured 

image as dark patches, orthogonal to the frame.  

Results on a set of test images show that the proposed solution 

does not compromise the quality of the detection and allows to 

achieve an improvement of a factor of 7x compared to the 

existing solutions under particular conditions, with the same 

accuracy in defect detection.  

 

The paper is organized as follow: in Section 2, we present the 

state of the art related to the system, and in Section 3 we present 

the rational of the proposal. In Section 4, we explain the proposed 

algorithm and we report the experimental results in Section 5. 

Conclusion are given in Section 6.  

 

2. STATE OF THE ART 

 
As usually done in inspection systems, the kinds of elaborations 

performed on each frame can mainly be divided into 3 stages [2], 

[10], [11]. 

1. Image preprocessing 

2. Defects detection 

3. Defects classification 

 

In the pre-processing phase, algorithms are used to prepare the 

image for the following stages, with the aim of reducing detection 

errors due to the acquisition process. The steps generally adopted 

concern noise reduction, contrast enhancement [12], elimination 

of unwanted regions and identification of the region of interest 

(ROI). 

 

In glass tube production, state-of-the-art ROI extraction 

techniques consist in identifying the useful part of the image 

inside the frame (called hereinafter Internal of the tube), 

excluding the dark area due to the glass surface on which the light 

rays of the illuminator have a critical angle of incidence 
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according to Snell's law. In this case, the light rays are reflected 

on the glass tube and do not affect the camera sensor. An 

algorithm to extract the internal part of the tube has been 

proposed in [1]. 

 
In the defect detection stage, algorithms are used to determine 

image regions whose pixels may identify a defect. To extract 

these regions, segmentation techniques are adopted [10], 

typically based on thresholds [3] or on edge detection [13], [14]. 

 

The classification stage consists of algorithms that extract a series 

of characteristics of the segmented regions, eventually including 

them within predetermined classes of defects. 

 

State of the art techniques for feature/defect detection and 

extraction are the edge detection techniques [13]. Edge detection 

aims to identify points in a digital image where the image 

brightness changes sharply compared to the rest. Among the 

various edge detection techniques, the algorithm proposed by 

Canny [14] (Canny algorithm) is considered the ideal one for 

images with noise [13]. The image is first smoothed with a 

Gaussian filter and then gradient magnitude is computed at each 

pixel of the smoothed image; edges are determined by applying 

non-maximum suppression, double threshold, and hysteresis. 

The algorithm has been usefully adopted in various applications 

domains (inspection of semiconductor wafer surface [15], 

detection of defects in satin glass [16], measuring icing shape on 

conductor [17], studies on bubble formation in co-fed gas-liquid 

flows [18]) and it has been also adopted for the detection of 

defects in similar inspection systems [1] 

 

Other techniques for defect detection and extraction are based on 

thresholds, that can be global (fixed for the whole image) or local, 

i.e. they can be variable in different regions of the image [19]. 

 

As for global thresholds techniques, [12] presents an inspection 

method for float glass fabrication. The authors utilize a 

benchmark image to remove bright and dull stripes that are 

present in their glasses. Then, they utilize adaptive global 

thresholds based on the OTSU algorithm [20] to separate 

distortions from defects. The OTSU algorithm selects threshold 

values (one for each image) that maximize the inter-class 

variance of the image histogram [21]. It is useful for separating 

background from defects/foreground and produces satisfactory 

results when images present bimodal or multimodal histograms 

[10]. It has been successfully utilized in [10] to derive a 

configurable industrial vision system for surface inspection of 

transparent parts (in particular, it has been tested on headlamp 

lens) and again in [22] to detach defects from the background in 

a float glass defect classificatory and in [23] or glass inspection 

vision systems.  

 

By considering the characteristics of the tube glass production, 

the use of single or multiple constant thresholds does not allow 

the detection of defects. Besides, techniques based on 

background subtraction or other template matching techniques 

[3],[24] cannot be utilized due to the tube vibration and the not 

perfect circular section of the tube (the “sausage” shape). 

As for local thresholds techniques, the Niblack’s [19] 

binarization method is a local adaptive thresholding technique, 

based on varying threshold over the image by using local mean 

value and the standard deviation of gray level evaluated in a 

window centered in each pixel. This method can separate the 

object or text from the background effectively in the areas near 

to the object. Niblack method is one of the document 

segmentation methods and has shown good results in segmenting 

text from the background. Anyway, it can be applied also to 

images without text [25] and has been applied in a vision system 

for auto seeding and for observing the surface of the melt in the 

Ky method for the Sapphire Crystal Growth Process [26]. In the 

Niblack’s approach, noise still occurs in a varying manner in the 

background; different improvements over the original paper have 

been proposed, which work to improve detection or reduce the 

processing time [19] that makes it not suitable for real-time 

execution. Examples are the approach presented in [27], that 

proposes new thresholds to limit noise, and in [28] that applies a 

global threshold to each sub-image and not to each single pixel 

to reduce processing time.  

 

3. THE ROI EXTRACTION 

All techniques extract a ROI from the acquired image by 

removing the part of the image (Fig. 1) that is not belonging to 

the inspection object ([1], [16]). Only in [23] is presented a 

technique that identifies not defective areas within the ROI 

(background) using a threshold on the local variance calculated 

in a window centered on each pixel (values of the variance lower 

than a threshold identify regions without defect). In that paper, 

statistics on areas without error are used to automatically 

calculate the thresholds to perform segmentation, more 

accurately than OTSU.  

 

 
Fig. 1. Image taken by the line-scan camera. The array of CCD 
sensors in the line scan camera is orthogonal to the direction of the 

movement of the tube (tube direction). The internal of the tube is also 

highlighted. It represents the portion of the image which is further 
analyzed for detecting the column with defect for segmentation. The 

frame is composed of 1000x2048 pixels.  

 

Our idea is to remove areas where it is possible to easily predict 

that no defects are present (reducing the size of the ROI). State 

of the art defect detection techniques examine the entire internal 

area of the tube. They waste processing time if it is known that 

some of these parts do not contain defects. 

 

We observe that, since the luminous intensity inside a column is 

almost constant except in pixels where there is noise or defects, 

the standard deviation of each column can be used as an indicator 

of the presence of a defect on that column. Therefore, values of 

the standard deviation of a column below a certain threshold 

indicate that the column can be excluded by the following 

elaborations. Anyway, the standard deviation of the columns is 

also influenced by the alignment of the illuminator with the 

acquisition camera. In case of not perfect alignment, the standard 

deviation shows an increasing trend from one edge of the tube to 

the other, which can be approximated with a linear trend. In order 

to avoid any influence from this factor, we consider the values of 

the standard deviation of the columns removing their linear trend 

(Detrended Standard Deviation - DSD). 

Another relevant requirement concerns the ability to accurately 

detect the size of defects. We have experimented that luminous 
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intensity of the defects presents high values near the central area 

of the defects but tends to decrease away from it. Therefore, not 

all the columns including a defect have high standard deviation 

value. Applying a single threshold on the DSD can then lead to 

an inaccurate detection of the size of the defects. Anyway, a 

defect includes columns with DSD over a certain threshold, and 

columns adjacent to those with lower DSD values. To detect 

these columns, we apply two hysteresis thresholds (tL and tH with 

tL<tH) algorithm. Columns with DSD values less than tL are not 

considered to belong to ROI, columns with values greater than tH 

are considered to belong to ROI and column with values between 

tL and tH are considered to belong to ROI only if they are adjacent 

to columns that belong to ROI. 

 

Using DSD criterion, areas near the edge of the tube are often 

classified as ROI, as they have peaks of DSD greater than the 

peaks of the DSD of the columns where defects are placed. These 

values are caused by many effects as the vibration of the moving 

tube or the imperfect circular shape of the tube. In these areas, 

there may be defects. A solution is to exclude the ROIs located 

near the edges. This solution is not destructive because, in the 

case of glass tube, 3 cameras and illuminators are utilized to have 

a 360 degrees inspection, and areas near the edges for a camera 

appear in central area for one of the other two (positioned at 120 

degrees from it and the tube). So, the solution to exclude areas 

near the edge of the tube seems the most appropriate to reduce 

again the time execution.  

 

4. ALGORITHM 

The proposed algorithm (Detrended Standard Deviation ROI 

Reduction algorithm, DSDRR), starting from the image 

calculates for each column the DSD. Then, the algorithm finds 

the columns whose DSD values are greater than a tH threshold 

and promotes all these columns as belonging to the ROI. Next, 

for each of the columns belonging to the ROI, the algorithm finds 

the adjacent columns whose DSD values are greater than tL and 

promotes also these columns as belonging to the ROI. If ROI of 

areas close to the edge of the tube must be excluded from the 

analysis, the algorithm removes from the ROIs the columns 

adjacent to the first and the last column. 

 

The choice of the threshold values used in the algorithm 

determines algorithm performance. It can cause the exclusion of 

defects in the ROIs (causing false negative in detection), or it can 

generate too large ROI with no reduction of the overall 

processing time. 

 

The choice of threshold tH must guarantee that at least one 

column of a defect belongs to the ROI, i.e. the DSD for that 

columns is higher than tH. To ensure that all the defects are 

correctly included in the ROI, the threshold tH must be chosen 

lower than the maximum values of the DSD of the columns of all 

the defects. As tH threshold increases, the number of zones 

included in the ROI decreases. Too high values of tH can exclude 

from the ROI areas that include defects. As tH threshold 

decreases, the number of zones included in the ROI increases. 

Too low values of tH, therefore, lead to extremely large ROI. 

The choice of threshold tL must guarantee that all the columns of 

a defect belong to the ROI, otherwise a portion of the defect are 

not detected, thus limiting the quality of detection. Too high 

value of tL could exclude portions of the shape of the defect from 

the ROI. Too low values of tL could cause again the ROI to 

include the entire internal of the tube. A possible solution is to 

set it to a value lower than the minimum value of the DSD of the 

columns of all the defects. This ensures that, if a defect is 

detected using threshold tH, its entire shape is included in the ROI.  

 

5. RESULTS 

The inspection system has been implemented and it is working 

on production lines of a glass tube foundry [1]. The algorithm has 

been implemented in OpenCV [29], [30] and the image 

processing pipeline runs as a task activated by the frame grabber 

when a new frame is ready in main memory. Table I summarizes 

the main features of the Host Computer, the algorithms utilized 

for the various stages of defect detection and their configuration 

parameters. All the image processing algorithms have been 

implemented using the OpenCV library [29], [30] and compiled 

with the Visual Studio compiler.  
TABLE I 

HOST COMPUTER  

Hardware Configuration 
Processor Intel® Core™ i7-940 Processor (8MB Cache, 2.93 GHz) 
RAM 8 GB 

Defect detection system 
Algorithm 

name 

Without 

DSDRR 
DSDRR with edges DSDRR no edges 

ROI extraction Internal part 

Internal part + 

DSDRR including 

edges with tL=0, tH=2 

Internal part + 

DSDRR excluding 

edges with tL=0, tH=2 

Defect 

Detection 
Canny (35,80) or MAGDDA (ws = 145, k=10.7) 

Implementation OPENCV 

 

This section shows the application of the algorithm on a set of 

images acquired during the production phase. All frames are 

composed of 1000 lines acquired by the line scan camera sensor 

(2K pixels). These frames contain defects with critical shape or 

position characteristics that make it difficult to detect, classify or 

include them in an ROI with the proposed algorithm. The 

machine on which tests are executed has a configuration like the 

production one and is equipped with an Intel Core i7-940 CPU 

running at 2.93 GHz. As for processing time, we perform 1000 

executions for each frame [31], we take for each frame the 

maximum total processing time. 

Our proposal may be applied to any defect detection algorithm. 

In our experiment, we utilized two algorithms that have been 

successfully applied in the inspection of pharmaceutical glass 

tube: the Canny algorithm [14] and the MAGDDA [32]. With 

Canny, the image is first smoothed with a Gaussian filter and then 

gradient magnitude is computed at each pixel; edges (marked 

pixels) are determined via non-maximum suppression, double 

threshold, and hysteresis. MAGDDA algorithm [32] works at 

row level and apply to the ROI a moving average filter of an 

assigned window. Then applies a fixed threshold (k), to mark the 

pixel. 

As for the Defect Classification stage, we adopt an algorithm that 

groups adjacent marked pixels using connected-components 

labeling and builds, for each group, the smallest rectangle that 

contains them. Measurements on the rectangle permits to 

individuate blobs and air lines. In the tested image-set, DSDRR 

is applied using thresholds tH = 2 and tL = 0. For each frame are 

reported: i) the ROI calculated with traditional approach 

(described in [1]), ii) the graph of the DSD values calculated on 

the columns and thresholds tH = 2 and tL = 0 and iii) the ROI 

calculated by the application of the DSDRR algorithm on these 

frames with tH = 2 and tL = 0. 

 

Cases of air line defects 

Fig. 2 contains a frame with an air line defect. DSD values are 

high in the central part of the defect but rotation and vibration 

cause DSD values not particularly elevated on the columns of the 

tails of the air line. The double threshold with hysteresis however 

succeeds in capturing the entire shape of the defect which is 
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completely included in the ROI. Fig. 3 shows a frame with an air 

line defect. In this case, the effects of rotation and vibration are 

not particularly prominent. The defect then appears as a straight 

and dark line and this causes particularly high DSD values. The 

proposed thresholds are therefore useful to capture and include 

this defect in the ROI. However, this defect spans two distinct 

frames. Fig. 4 contains a frame with the tail of the air line of Fig 

3. The entire shape of the defect spans two different frames. The 

reported frame contains a smaller fraction of the entire shape of 

the defect and therefore the value of the DSD experiences a 

smaller variation than it would have if all the defect were 

included in the frame. Despite this situation, the thresholds 

presented are sufficient to locate the defect and allow the DSDRR 

algorithm to include it in the ROI. Fig. 5 shows a frame with two 

air line on the two faces of the tube. These defects have different 

lengths and have shape variations due to rotation and vibration. 

In particular, the shorter defect has a lighter luminous intensity 

than the other defect, and therefore the DSD values are lower. In 

this case, only a few columns have a DSD value greater than the 

tH threshold, so this defect is included in the ROI. Since all defect 

columns have a DSD value greater than tL, then the entire defect 

shape is included in the ROI. The analysis of this frame 

underlines that lower values of the tH threshold can exclude from 

the ROI the defect and therefore cause a false negative in the 

phase detection. 

 

Cases of blob defects 

Fig. 6 shows a frame with a blob defect. This defect, although 

small, has very low luminous intensity values, so the DSD values 

on the columns are very high compared to those on the defect-

free columns. On the right side of the image, it is possible to see 

lightning effects that are not perfectly aligned. Removing the 

trend from the standard deviation values allows these defect-free 

areas to be removed from the ROI. 

In Fig. 7 the blob defect is located in a ROI near the edge of the 

tube. The exclusion of this area from the ROI algorithm leads to 

a false negative in the inspection of this frame. However, this 

blob is centrally located in the frame acquired from another 

camera, so to reduce processing time areas near the edges of the 

tube can be removed. Fig. 8 shows a frame with 3 blob defects. 

The presence of multiple defects located in the same columns 

bring an increase in DSD values, therefore their inclusion in the 

ROI becomes particularly efficacious. 

 

Case of frame without defects 

Fig. 9 shows a frame without defects. On the right side of the 

frame are visible effects due to the wavy shape of the tube and 

the presence of dust on the surface of the glass. These effects 

cause high DSD values leading to the inclusion of these areas in 

the ROI. The classification subsystem can correctly detect the 

absence of defects in this frame. DSDRR returns an empty ROI 

on frames without defects and without effects due to noise. 

 

 

 

 

 
Fig. 2 i) the ROI calculated with traditional approach ii) the graph of the 

DSD values calculated on the columns of the extracted ROI and the 

proposed thresholds iii) the reduced ROI applying DSDRR algorithm with 

proposed thresholds (tH = 2 and tL = 0). 
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Fig. 3 i) the ROI calculated with traditional approach ii) the graph of the 

DSD values calculated on the columns of the extracted ROI and the 

proposed thresholds iii) the reduced ROI applying DSDRR algorithm with 

proposed thresholds (tH = 2 and tL = 0). 
 

 

 

 

 
Fig. 4  i) the ROI calculated with traditional approach ii) the graph of the 

DSD values calculated on the columns of the extracted ROI and the 

proposed thresholds iii) the reduced ROI applying DSDRR algorithm with 

proposed thresholds (tH = 2 and tL = 0). 
 

ISSN: 1690-4524                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 17 - NUMBER 2 - YEAR 2019                             35



 

 

 

 
Fig. 5 i) the ROI calculated with traditional approach ii) the graph of the 

DSD values calculated on the columns of the extracted ROI and the 

proposed thresholds iii) the reduced ROI applying DSDRR algorithm with 

proposed thresholds (tH = 2 and tL = 0). 

 

 

 

 
Fig. 6 i) the ROI calculated with traditional approach ii) the graph of the 

DSD values calculated on the columns of the extracted ROI and the 

proposed thresholds iii) the reduced ROI applying DSDRR algorithm with 

proposed thresholds (tH = 2 and tL = 0). 
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Fig. 7 i) the ROI calculated with traditional approach ii) the graph of the 

DSD values calculated on the columns of the extracted ROI and the 

proposed thresholds iii) the reduced ROI applying DSDRR algorithm with 

proposed thresholds (tH = 2 and tL = 0). 
 

 

 

 

 
Fig. 8 i) the ROI calculated with traditional approach ii) the graph of the 

DSD values calculated on the columns of the extracted ROI and the 

proposed thresholds iii) the reduced ROI applying DSDRR algorithm with 

proposed thresholds (tH = 2 and tL = 0). 
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Fig. 9 i) the ROI calculated with traditional approach ii) the graph of the 

DSD values calculated on the columns of the extracted ROI and the 

proposed thresholds iii) the reduced ROI applying DSDRR algorithm with 
proposed thresholds (tH = 2 and tL = 0). 

 

Processing Times 

For each of the proposed frames, Table II shows the parameters 

measured during their processing. In detail, we have reported: 

a) the measurement of the ROI examined (as number of 

columns) 

b) the maximum processing time of the entire frame using the 

Canny algorithm 

c) the maximum processing time of the entire frame using the 

MAGDDA algorithm using the traditional and DSDRR approach 

as for ROI calculation, including and excluding areas close to the 

pipe edges. 
 

TABLE II 

PROCESSING TIMES OF THE EXAMINATED FRAMES 

 
Without 

DSDRR 

DSDRR 

with edge 

DSDRR 

without edge 

Frame of Fig 2 

ROI 
(# of columns) 

1136 154 46 

CANNY 86.253 ms 37.145 ms 29.698 ms 

MAGDDA 30.875 ms 18.112 ms 15.541 ms 

Frame of Fig 3 

ROI 
(# of columns) 

1240 81 16 

CANNY 77.587 ms 33.258 ms 24.980 ms 

MAGDDA 23.185 ms 16.090 ms 14.222 ms 

Frame of Fig 4 

ROI 
(# of columns) 

1240 79 16 

CANNY 76.968 ms 33.202 ms 24.771 ms 

MAGDDA 23.001 ms 15.814 ms 14.081 ms 

Frame of Fig 5  

ROI 
(# of columns) 

1140 194 108 

CANNY 86.843 ms 36.092 ms 29.687 ms 

MAGDDA 32.198 ms 19.025 ms 16.118 ms 

Frame of Fig 6 

ROI 
(# of columns) 

1348 66 24 

CANNY 82.583 ms 33.286 ms 24.968 ms 

MAGDDA 27.693 ms 17.286 ms 15.108 ms 

Frame of Fig 7 

ROI 
(# of columns) 

1336 131 0 

CANNY 79.289 ms 34.985 ms 11.397 ms 

MAGDDA 23.925 ms 17.898 ms 11.358 ms 

Frame of Fig 8 

ROI 
(# of columns) 

1148 138 16 

CANNY 75.286 ms 32.869 ms 19.682 ms 

MAGDDA 22.524 ms 14.625 ms 13.893 ms 

Frame of Fig 9 

ROI 
(# of columns) 

1328 348 242 

CANNY 89.677 ms 37.281 ms 23.714 ms 

MAGDDA 23.926 ms 19.628 ms 17.002 ms 
 

As regards the measurement of ROI, compared to the area of the 

internal parts of the tube, the ROI is reduced on average by 88%, 

and at most by 95% and at least by 74%. Excluding the parts near 

the edges of the tube, the ROI is reduced on average by 95% and 

at most by 100% (in frames without defects) and at least by 82%. 

The reduced area of the ROI has a direct impact on the processing 

time of the further stages of detection, and in the overall 

processing time. The processing times of entire process using 

Canny have an increase in performance of a factor 2.5x in the 

best case using DSDRR including edges of the tube and of a 

factor 7x excluding edges. For MAGDDA, the factors are 1.7x 

including edges and 2.1x excluding edges of the tube. 

In particular, in cases where the frames do not contain defects, 

the proposed algorithm does not detect ROIs and the execution 

of subsequent stages of detection and classification and reducing 

waste of processing time. 

Since the processing period must be lower than the acquisition 

period, a reduction of the processing time allows the use of 

cameras with a higher sample rate or to increase the speed of 

production without loss of accuracy in defects recognition.
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6. CONCLUSION 

A vision system can be exploited to inspect the quality of glass 

products during the production process. Improvements in such 

processes and the need to increase the accuracy of detection 

suggest the adoption of solutions that reduce the processing time 

of all the steps involved in defect detection and classification. A 

classical approach for dealing with inspection consists in 

extracting the whole internal part of the product (ROI) and pass 

it to defect detection and classification algorithm. In this paper, 

we proposed and analyzed the idea of further reducing the ROI 

area by excluding columns that can be assumed to not include 

defects, with a consequent reduction in the processing time. As a 

proof of concept, we apply the idea to the inspection of 

pharmaceutical glass tubes. Detrended Standard Deviation can be 

exploited to compensate the effects of not perfect alignment of 

camera and illuminator, and we utilize a double threshold with 

hysteresis algorithm to detect column belonging to the ROI that 

must be investigated. Results of a set of typical image show that 

our proposal does not change the quality of detection of the 

system and significantly improves processing time of both defect 

detection and classification stages. Processing time can be 

reduced of a factor 7x in frames without defects. 

The idea of reducing the ROI is general: as for future works, we 

plan to quantify its effectiveness in other application domains, 

and to investigate strategies to parallelize the algorithms by 

considering advanced CMPs and the GPU architectures and their 

memory hierarchy [33]. 
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