
Canvas Deceiver - A New Defense Mechanism Against Canvas Fingerprinting

Muath A. OBIDAT

Center for Cybercrime Studies, City University of New York

New York, NY 10019

Suhaib OBEIDAT

Computer Science, Bloomfield College

Bloomfield, NJ, 07003

Jennifer HOLST

Center for Cybercrime Studies, City University of New York

New York, NY 10019

Taeho LEE

Department of Computer Science, John Jay College of Criminal Justice

New York, NY 10019. USA

ABSTRACT

Browser fingerprinting refers to a collection of techniques

used to gather information about a user’s browser

attributes. The information gained from a browser

fingerprint can be used to partially or fully identify a user

without using any other technique, e.g., cookies. One type

of browser fingerprinting is canvas fingerprinting which

utilizes HTML-canvas elements to identify users. Various

defense algorithms against canvas fingerprinting have

been developed, but unfortunately, have been shown to be

penetrable and detectable.

In this paper, we present Canvas Deceiver, a new

countermeasure against canvas fingerprint. Canvas

Deceiver is a browser extension that uses a new algorithm

that is different from existing problem-possessing

algorithms. Canvas Deceiver does not rely on randomness,

does not provide a unique identity, and is not detectable.

To show its functionality and effectiveness, we tested

Canvas Deceiver using different tools that provide browser

fingerprint tests. According to the test results, Canvas

Deceiver outperforms current countermeasures in

detectability while providing sufficient anonymity to its

users. For instance, in Browserleaks, the user originally

was put into a group with 634 people. After using Canvas

Deceiver, he is put into a group with 7847 people.

Keywords: Canvas Deceiver, Canvas Fingerprinting,

JavaScript, Browser Extension, Browser Fingerprinting,

Privacy

I would like to express my gratitude to Professor Abdullah Al

Hayajneh for his thorough peer-editing of this paper. Professional

Security Studies at New Jersey City University

1. INTRODUCTION

Ever since the inception of the Internet of Things (IoT),

information protection has been a hot area of IoT research.

Users’ personal information, e.g., shopping behavior and

items of interest, has great value now, hence an increase in

user tracking activities [28]. In addition, the method used

for user tracking has become significantly more

sophisticated. Previously, users were tracked using stateful

information such as cookies. Now, websites do not rely on

stored information, rather, they use stateless information

captured through browser fingerprinting [24, 25].

In the early days of the World Wide Web (WWW), each

browsers rendered web content differently. To provide a

better experience for users, the user-agent header was

created and provided information about the user browser

and system, allowing a website to customize its

presentation [19]. The advent of JavaScript further allowed

websites to dynamically present content; recent statistics

show that around 97% of websites use JavaScript [27].

Cookies, small files stored locally on the user’s computer

that aid in user tracking by websites, are visible to users

and can be cleared. As browsers have given more control

over third-party cookies to users, interest has grown in

browser fingerprinting as a replacement [18, 21]. Browser

fingerprinting is not visible to users unless specifically

identified as being used [15].

While browser fingerprinting has been seen negatively in

terms of enabling user tracking, it has also been used in

more positive ways, including bot detection, fraud

detection, authentication, and improving website usability

66 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 6 - YEAR 2020 ISSN: 1690-4524

and operation [3, 15, 19]. This more positive use of

browser fingerprinting endeavors to identify a profile of a

good user, while attackers try to evade detection by either

posing as a legitimate user or avoiding appearing to be a

known bad user [3]. Nevertheless, browser fingerprinting

remains a privacy concern. Even if websites presented a

privacy policy and requested user acknowledgment of

cookie use, Fietkau et al. found through the use of their

tool FPMON that most websites accessed fingerprint

information before this acknowledgment and consent was

obtained [15]. They also found that websites with

especially sensitive information used a large number of

fingerprinting features. To know that a user has declined

consent to tracking, their fingerprint still has to be captured

and compared to those who have opted out [21]. In

response to these privacy concerns, the World Wide Web

Consortium (W3C) has prepared guidelines and best

practices for website developers to limit the fingerprinting

surface and increase anonymity of users [26].

Browser fingerprinting combines various types of

fingerprinting technologies to extract attributes of a user's

browsing-environment. Separate pieces of information are

not sufficient to identify a person, but when combined,

they can be used to either partially or fully identify a user.

The first large-scale analysis done by Eckersley in 2010

showed that 83.6% of 470,161 browsers that visited his

testing website were uniquely identifiable [11]. A 2018

study of fingerprinting by Gómez-Boix looked at a more

general-purpose website with a larger user base and found

33.6% unique fingerprints, leading to the question of

effectiveness of fingerprinting on a larger scale [17, 18].

Browser fingerprinting is composed of different types of

fingerprinting technologies. Examples of these

technologies include user agent, canvas (two-

dimensional), WebGL (three-dimensional), Web Audio,

extensions, and fonts. Canvas fingerprint is independent

from the attributes gathered from other fingerprinting

methods, thus can be combined with other attributes easily

to produce a uniquely identifiable browser fingerprint [20].

Detection of fingerprinting is complicated by the difficulty

in determining whether access to particular features is due

to the regular use of the web application or to an attempt

to track users [15, 19].

Different types of countermeasures have been built against

canvas fingerprinting. These methods include: blocking

Application Programming Interfaces (APIs), altering the

canvas fingerprint by adding noise, and altering the canvas

fingerprint by modifying the canvas. All of these methods

have their own issues including easy detection, browser

malfunction, and hash collision [9, 13, 24, 25]. Using

previously conducted studies and current detection

methods, we will show how each of these methods is

incompetent and even dangerous for user privacy when

used.

In this paper, we take a different approach from currently

existing measures for blocking canvas fingerprinting.

Canvas Deceiver intercepts JavaScript requests and

replaces the requested JavaScript file with a modified

version of it. Canvas Deceiver provides static canvas

fingerprints and does not touch any other parts of HTML

or JavaScript, significantly reducing its detectability. This

method can disguise the user into someone else hence

removing user-uniqueness. We expect this method to

outperform currently used methods.

In this paper, we make three contributions:

 We study currently used countermeasures against

canvas fingerprinting. By using past studies,

manual tests, and results obtained from using

such countermeasures, we show different types of

problems caused by using current

countermeasures.

 We introduce a new countermeasure against

canvas fingerprinting, Canvas Deceiver. We

show the mechanism behind Canvas Deceiver.

We also show how Canvas Deceiver is more

effective than other countermeasures.

 We evaluate Canvas Deceiver effectiveness and

compare that against other countermeasures using

various types of browser fingerprinting tools.

2. BACKGROUND AND MOTIVATION

In this section, we provide an overview of how canvas

fingerprinting is performed and currently existing

countermeasures against canvas fingerprinting. We also

show the shortcomings such methods suffer from.

2.1 HTML Canvas

HTML’s canvas element allows for specifying two-

dimensional surface that can be used for drawing raster

graphics. For example, the following HTML code creates

a drawing surface of size 300 by 200 pixels:

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 6 - YEAR 2020 67

We typically assign an id to a canvas element, so we can

use this later to populate the canvas with its graphics

content.

While such graphics are raster in nature, rather than vector,

they are actually generated with scripting. Using

instructions expressed in JavaScript, canvas can be used

for drawing on the fly, which allows for responding to user

events. Canvas is powerful enough to allow for creating

basic illustrations, animations, or even entire applications

using solely browser capabilities with no reliance on

external plugins such as Adobe Flash [22].

The canvas API provides functions for creating lines and

shapes, adding text, moving objects around, and applying

font styles among many others. For example, using a bit of

JavaScript, not shown for the sake of brevity, something

such as the following can be drawn [22]:

The API also provides methods for loading images

encoded as a Data URI, a plaintext representation of

images. This makes it possible to embed such an image

directly in the HTML document, so the browser does not

have to make a separate request to get it.

2.2 Canvas Fingerprinting

Canvas fingerprinting was first introduced by Mowery et

al [20]. It is done by exploiting the canvas API used to

draw graphics and animations on a web page via scripting

in JavaScript. A generated canvas image is rendered

differently depending on the operating system (OS) type,

browser type, and GPU type. The steps for generating a

canvas fingerprint are:

1. A user visits a website that uses canvas

fingerprinting.

2. The website calls a JavaScript-based canvas

fingerprinting script.

3. The canvas fingerprinting script generates a

canvas image.

4. The canvas fingerprinting script then uses

ToDataURL() method to generate a data uniform

resource identifier (URI), a base64 (an encoding

algorithm) string representation of the canvas

image. The data URI will be different depending

on the type of OS, browser, and GPU used.

5. The JavaScript file uses a hash function to

compute a hash of Data URI. This hash works as

the canvas fingerprint of the user.

6. The website then uses the computed canvas

fingerprint and combines them with other

fingerprints to generate a browser fingerprint,

which can be used to identify the user.

7. The canvas fingerprint can be stored in the

website's server for various purposes including

statistical purposes.

Hash functions are used because the data URIs are

generally very long. Computing and storing a hash of a

data URI results in better resource utilization. A study

conducted by Englehardt et al. shows that 1.6% of the

Alexa top 1 million sites used canvas fingerprinting by

year of 2016 [14]. Independently, Acar et al show that 5%

of the top 100,000 websites employ it [1]. More recently,

Fietkau et al. find that 17.85% of the Alexa top 10,000 sites

used canvas fingerprinting [15].

The mechanism behind canvas fingerprinting is actually

very simple. By using a simple JavaScript library called

“Fingerprint.js” [16], any website can take a hash of data

URI from any user enabled canvas API and use it as the

canvas fingerprint. “Fingerprint.js” does all the necessary

work of creating a canvas, creating a canvas image, taking

a data URI using toDataURL(), and taking a hash out of it.

And because it has simple operations, all JavaScript-based

canvas fingerprinting scripts are similar in nature. The only

significant differences between them are the way of taking

the hash out of data URI and the type of canvas image that

is being created.

2.3 Canvas Fingerprinting Countermeasures

Because of its simple design, there are many ways to block

websites from getting canvas fingerprints or to provide

them with incorrect data. One way of blocking canvas

fingerprinting is to disable the canvas API entirely.

However, this prevents the websites from creating any

canvas or canvas images. This type of countermeasure is

implemented in tools such as Canvas Blocker [6, 12]. The

second way of blocking canvas fingerprinting is by

altering the data URI that is extracted from the rendered

canvas image. The alteration can be done to either the data

URI retrieved using ToDataURL() or directly to the canvas

image. Generally, tools add random noise to the canvas

image so it can be rendered differently by users. This is

currently the most widely used method. Canvas Blocker,

Canvas Defender, and NONYM!ZER are all known to use

68 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 6 - YEAR 2020 ISSN: 1690-4524

this method [6, 7, 13]. Randomization was also the method

used more generally by Nikiforakis et al. because they

asserted that tracking was not just about trying to identify

unique individuals, but being able to link different website

visits by the same user [21]. By making each visit look

different, linkability would harder to achieve.

2.4 Limitations of Current Countermeasures

The aforementioned two methods possess a host of

problems that can be exploited resulting in the ability to

uniquely identify users. The first method, disabling the

canvas API in entirety, can cause inconvenience for users

as it prevents all canvas images from being drawn. Users

basically lose a function of their browser, just to prevent it

from being exploited as a canvas fingerprint. Another

problem of disabling the canvas API is the detectability of

that action. Browser fingerprinting in general is a very

unfamiliar subject to the majority of Internet users. An

even smaller portion of users would disable canvas API

requests. For being in this small group of users who do not

have a working canvas, one can be tracked by the websites

as easily as any other users who have a working canvas.

Not only that, websites can know whether canvas API is

partially or fully blocked. Partially blocking the canvas

API has the same problem. If method ToDataURL or any

other parts of canvas is disabled, the website notices this

and puts the user into the category of “user with canvas

fingerprinting blocked”. Due to these reasons, disabling

the canvas API is considered an incompetent approach

when compared to alternation of canvas image and

addition of random noise. Figure 1 shows these problems.

The second way of blocking canvas fingerprinting is by

adding randomized noise. This method detects

ToDataURL requests and performs a man-in-the-middle

attack on the website. It intercepts the canvas image and

alters it by adding noise to it. The noise can be added to the

red, green, and blue value of the canvas image or any other

components of it. As a result, ToDataURL() produces a

different string. In general, using randomization to make

every website visit look different is difficult because

impossible combinations of information may be created,

and these combinations can be identified [21].

The alteration method can be static or can be volatile (new

alteration is done after each refresh of the web page) each

possesses its own problems If the alteration is volatile, the

website can detect the fact that only the canvas fingerprint

of the user is changing while other browser fingerprints

such as user agent, IP address, and font are staying the

same. Static alteration on the other hand suffers from hash

collision. That is, the string produced before and after

alteration can be the same rendering the alteration

meaningless. The probability of getting hash collision

depends on the randomizing function that is used for

alteration. For instance, NONYM!ZER, a framework

created by ElBanna et al., has a 0.3% to 1.1% rate of hash

collision depending on the OS type [13].

Figure 2: Canvas Blocker producing 100% unique

canvas fingerprints [2, 5].

Alteration methods in general also suffer from a range of

issues. One problem with this approach is

distinguishability. For any user, it is nearly impossible to

have a 100% unique canvas fingerprint, especially

nowadays that websites have gathered hundreds of

thousands, or even millions of, canvas fingerprints.

Regardless of one’s computer configuration, there is

probably a group of people who have the same

configuration that affect the canvas fingerprints. Because

of that, if a person has a perfectly unique canvas

fingerprint, as shown in Figure 2, that alone can be used to

narrow down the user’s identification. Another problem

with alteration is detectability. Just like the request

Figure 1: Website detecting partial/full block of canvas API / JavaScript [4]. Left to right: Normal,

JavaScript Disabled, and Canvas Blocker.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 6 - YEAR 2020 69

blocking method, the alteration method can easily be

detected by websites. A website can take a canvas

fingerprint before Document Object Model (DOM) loads,

and take the canvas fingerprint again after DOM has

loaded. Then it can compare both canvas fingerprints, if

the fingerprints are different, it means the canvas

fingerprint is spoofed. Webbrowsertools provides a simple

test that can detect canvas fingerprint spoofers [10].

Through manual tests, we found that current methods such

as Canvas Blocker and Canvas Defender can be detected

using this test. The result is shown in Table 1. As we can

see, the fingerprint IDs change for the test result with

Canvas Blocker. Without Canvas Blocker, the test gives a

uniform test result. This makes these methods very

vulnerable as usage of canvas fingerprint spoofers can be

uniquely identifying of a user.

Yet another approach to mitigate fingerprinting in general

is normalization, where an attempt is made to make all

devices and users look the same; this is the approach taken

by the Tor and Brave browsers [18, 19]. Researchers are

also investigating machine learning approaches, including

FP-Inspector from Iqbal et al., to detect and mitigate

fingerprinting [18].

3. THE PROPOSED SCHEME CANVAS

DECEIVER

Canvas Deceiver is the method we introduce, which

overcomes the problems current canvas fingerprinting

countermeasures suffer from. In this section, we discuss

the mechanism behind Canvas Deceiver and compare it to

existing countermeasures.

3.1 Mechanism

For Canvas Deceiver, we employ direct modification of

the JavaScript file as our method. From investigation, we

found that a lot of canvas fingerprinting methods use the

same canvas image and the same JavaScript file for its

fingerprinting. This means that neutralizing popular

JavaScript files such as Fingerprint.js [16] can result in

significant progress in blocking canvas fingerprinting.

The mechanism behind Canvas Deceiver is very simple. If

a website makes a request to a canvas fingerprinting

JavaScript file, Canvas Deceiver intercepts the request and

gives a modified version of it, which is stored inside

Canvas Deceiver’s local library. The replaced JavaScript

file acts the same way as the original version. The only

difference is that it gives a persistent, predetermined string

Table 1: Detection of canvas alteration [10]. Top: Test result without Canvas Blocker Bottom: Result with

Canvas Blocker

70 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 6 - YEAR 2020 ISSN: 1690-4524

when ToDataURL() is called. The scheme is shown in

Figure 3.

Canvas Deceiver can be implemented by two different

methods. One way is by using Chrome DevTools [8].

Users can manually override parts of the content of any

website. By manually overriding and making

modifications to canvas fingerprinting JavaScript file, any

user can implement the method that is used by Canvas

Deceiver. Once the user makes override and replaces the

JavaScript file with a modified, local version, Chrome

browser automatically uses the locally modified JavaScript

file.

Another way of implementing Canvas Deceiver method is

through a browser extension. Canvas Deceiver is being

developed as a browser extension with a library of canvas

fingerprinting JavaScript files. Canvas Deceiver grabs the

JavaScript request of a website with chrome web Request

and hands in the modified version of the requested

JavaScript file. We also want to further develop Canvas

Deceiver to react to ToDataURL().

The local JavaScript files are currently modified manually.

We retrieve widely used JavaScript files from websites and

modify them to produce desired predetermined canvas

fingerprints. Normally, strings are obtained from

ToDataURL() and passed to a variable. We change this

and pass a fixed predetermined string to the variable. This

simple modification is shown in Listing 1. Here, o =

c.toDataURL ("image/png") is replaced with o =

'predetermined string’. The JavaScript file then takes a

hash of this predetermined string. As a result, a generic

canvas fingerprint is produced by the JavaScript file. We

then store them inside Canvas Deceiver’s JavaScript

library. When each JavaScript is being requested by the

website, Canvas Deceiver intercepts the request and gives

the modified version from the library to the website.

3.2 Evaluation and Results

Due to its behavior and mechanism, Canvas Deceiver

overcomes most of the problems that current canvas

fingerprinting countermeasures possess. Detectability is

one of the most crucial and commonly found problems in

current canvas fingerprinting countermeasures. Canvas

Deceiver’s strongest point is its invisibility. Firstly, none

of the canvas API or JavaScript requests in general are

blocked by Canvas Deceiver. The user gets a perfectly

functioning browser. Secondly, no alteration is involved in

Canvas Deceiver. Canvas Deceiver provides a uniform

string, so taking canvas fingerprints multiple times has no

effect on it. In addition, Canvas Deceiver does not interact

with created canvas images. Investigation of canvas

images also has no effects on Canvas Deceiver.

To evaluate Canvas Deceiver’s detectability, we ran the

same tests that we performed on other tools in section 2.

As shown in Figure 4, the same test that detected random

noise could not detect Canvas Deceiver. The test could not

spot the fingerprint spoofing done by Canvas Deceiver.

Compared to existing tools like Canvas Blocker and

Canvas Defender, Canvas Deceiver has a huge advantage

in detectability.

Another strength of Canvas Deceiver is its

indistinguishability. The strings produced by Canvas

Deceiver are predetermined data we gathered using

popular canvas fingerprinting images and settings of a

mass-produced computer model. Because of this, the hash

taken from the provided string looks very generic. Current

canvas fingerprinting countermeasures produce unique

canvas fingerprints, exposing users and making them

easily trackable. This is not a problem for users of Canvas

Deceiver. Because of its generic string, the canvas

fingerprints produced from our modified JavaScript files

look completely normal. This result lets the users blend

into a huge group of people who have the same canvas

fingerprints. As shown in Figure 5, the uniqueness after

Figure 3: Dynamics of the Proposed Scheme -

Canvas Deceiver

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 6 - YEAR 2020 71

using Canvas Deceiver drops by a significant margin. For

instance, in Browserleaks, the user originally was put into

a group with 634 people. After using Canvas Deceiver, he

is put into a group with 7847 people. The user is now

placed in a much bigger group, which makes it harder for

websites to narrow down the user’s identity. Similarly, the

AmIUnique test had non-uniqueness increase from 0.64%

to 1.6%. Using 1,720,569 as the total number of collected

fingerprints, this represents that the user is put into a group

with 16,517 more people. These results show that the

usage of Canvas Deceiver mitigates canvas fingerprinting

considerably.

Canvas Deceiver’s independence from randomization is

another advantage to Canvas Deceiver. By observing

current canvas fingerprinting countermeasures, we found

that randomization is responsible for many different

problems. Randomization is responsible for: uniqueness of

canvas fingerprints, detectability, noticeable difference in

canvas image, and hash collisions.

Canvas Deceiver is also free from hash collisions. The

strings produced by Canvas Deceiver come from one

uniform computer and browser setting. This setting is very

generic, so a lot of users are using the same settings.

Because of that, it is very possible for a user to have the

exact same canvas fingerprint as the one produced by

Canvas Deceiver.

The user, however, does not need to worry about this

because it means the user’s canvas fingerprint is too

generic to be used for browser fingerprinting. Further, as

more users use Canvas Deceiver, the canvas fingerprints

produced from Canvas Deceiver will become even more

insignificant.

Figure 4: Detectability of Canvas Deceiver [10].

4. DISCUSSION AND FUTURE DEVELOPMENT

By using multiple browser fingerprinting sources, we

tested currently used canvas fingerprinting

countermeasures such as Canvas Blocker and Canvas

Defender along with Canvas Deceiver. During the test,

Canvas Deceiver outperformed all of its contestants. The

criteria of the tests were: detectability, uniqueness, and

functionality. Canvas Deceiver provided a non-

distinguishable, uniform canvas fingerprint that is not

Listing 1: Modification of canvas fingerprinting JavaScript file. Canvas Deceiver adds a code to replace data URI of

canvas image [2].

72 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 6 - YEAR 2020 ISSN: 1690-4524

detectable. It did not harm the browser or the canvas image

in any way.

Figure 5: Outcomes of Canvas Deceiver [2, 4].

Canvas Deceiver is still in development. There are 2 major

assignments for Canvas Deceiver. One is getting a bigger

library. As of now, Canvas Deceiver can only respond to a

handful of websites. Getting its library bigger so it can

respond to many different websites is very important. We

can also make Canvas Deceiver more compact by finding

out different ways of intercepting JavaScript files and

modifying them.

Another assignment is to determine the most generic

computer setting. Takasu et al. conducted a study on this

topic in 2015 [23]. We can conduct another large-scale

study similar to this with more recent data retrieved from

popular browser fingerprinting sources such as

AmIUnique [2]. Implementing the most generic canvas

fingerprint would enhance Canvas Deceiver significantly.

5. CONCLUSION

A recent crawling result showed decrease in usage of

canvas fingerprinting [14], while another recent study

using a different methodology showed an increase [17]. In

any event, canvas fingerprinting is still a very dangerous

fingerprinting technique which can be a crucial part of

browser fingerprinting. Compared to the currently existing

canvas fingerprint countermeasures such as Canvas

Blocker, Canvas Defender, and Canvas Fingerprint

Defender, Canvas Deceiver has advantages in the

following criteria: (i) detectability, (ii) uniqueness, (iii)

uniformity, and (iv) functionality of the browser.

We plan to extend this work by implementing Canvas

Deceiver as a browser extension. We also plan on

expanding the library of canvas fingerprinting JavaScript

files that we make use of. To further verify the

effectiveness of the proposal, we also plan on testing it

against a much larger set of websites and comparing its

performance to counterpart anonymizing schemes. We

also plan on combining Canvas Deceiver with other

effective countermeasures against other types of browser

fingerprinting and explore the effectiveness of such a

synergetic scheme.

6. ACKNOWLEDGMENT

Funding for this work was provided by a faculty

scholarship grant from the Office for the Advancement and

Research at John Jay College.

7. REFERENCES

[1] G. Acar, C. Eubank, S. Englehardt, M.Juarez, A.

Narayanan, and C. Diaz. “The Web Never Forgets,”

Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security - CCS 14,

2014.

[2] AmIUnique. Accessed on: May 17, 2020. [Online].

Available at https://amiunique.org/

[3] B. A. Azad, O. Starov, P. Laperdrix, and N.

Nikiforakis. “Short Paper-Taming the Shape Shifter:

Detecting Anti-fingerprinting Browsers,” International

Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment, June 2020, Springer,

Cham., pp. 160-170.

[4] V. Bernardo, and D. Domingos. “Web-Based

Fingerprinting Techniques,” Proceedings of the 13th

International Joint Conference on e-Business and

Telecommunications – Vol. 4: SECRYPT, (ICETE

2016), pp. 271-282.

[5] Browser Leaks. Accessed on: May 17, 2020. [Online].

Available at: https://browserleaks.com/canvas

[6] CanvasBlocker. Accessed on: May 17, 2020. [Online].

Available at: https://github.com/kkapsner/CanvasBlocker

[7] Canvas Defender. Accessed on: May 17, 2020.

[Online]. Available at: https://multilogin.com/canvas-

defender/

[8] Chrome DevTools. Accessed on: May 17, 2020.

[Online]. Available at:

https://developers.google.com/web/tools/chrome-devtools

[9] A. Datta, J. Lu, and M. C. Tschantz. “Evaluating Anti-

Fingerprinting Privacy Enhancing Technologies,” The

World Wide Web Conference 2019.

https://doi.org/10.1145/3308558.3313703.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 6 - YEAR 2020 73

[10] Detecting Canvas Fingerprint Spoofer. Accessed on:

May 17, 2020. [Online]. Available at:

https://webbrowsertools.com/canvas-fingerprint/

[11] P. Eckersley, “How unique is your web browser?”

International Symposium on Privacy Enhancing

Technologies Symposium, 2010, Springer, pp. 1–18.

[12] A. ElBanna and N. Abdelbaki, "Browsers

Fingerprinting Motives, Methods, and Countermeasures,"

2018 International Conference on Computer,

Information and Telecommunication Systems (CITS),

Colmar, 2018, pp. 1-5.

[13] A. ElBanna and N. Abdelbaki, "NONYM!ZER:

Mitigation Framework for Browser Fingerprinting," 2019

IEEE 19th International Conference on Software

Quality, Reliability and Security Companion (QRS-C),

Sofia, Bulgaria, 2019, pp. 158-1.

[14] S. Englehardt and A. Narayanan, “Online tracking: A

1-million-site measurement and analysis,” Proceedings of

the 2016 ACM SIGSAC Conference on Computer and

Communications Security, 2016, pp. 1388–1401.

[15] J. Fietkau, “The Elephant in the Background: A

Quantitative Approach to Empower Users Against Web

Browser Fingerprinting,” No. 4473, EasyChair, 2020.

[16] Fingerprint.js. Accessed on: May 17, 2020. [Online].

Available at:

https://github.com/Valve/fingerprintjs2/blob/master/finge

rprint2.js

[17] A. Gómez-Boix, P. Laperdrix, B. Baudry, “Hiding in

the Crowd: an Analysis of the Effectiveness of Browser

Fingerprinting at Large Scale,” WWW2018 -

TheWebConf 2018: 27th International World Wide

Web Conference, Apr 2018, Lyon, France. pp.1-10,

⟨10.1145/3178876.3186097⟩, ⟨hal-01718234v2⟩

[18] U. Iqbal, S. Englehardt, and Z. Shafiq,

“Fingerprinting the Fingerprinters: Learning to Detect

Browser Fingerprinting Behaviors”, 2020, arXiv preprint

arXiv:2008.04480.

[19] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine,

“Browser fingerprinting: a survey,” ACM Transactions

on the Web (TWEB), 14(2), 2020, pp. 1-33.

[20] K. Mowery and H. Shacham, “Pixel perfect:

Fingerprinting canvas in HTML5”, IEEE Web 2.0

Workshop on Security and Privacy (W2SP), 2012.

[21] N. Nikiforakis, W. Joosen, and B. Livshits,

“Privaricator: Deceiving fingerprinters with little white

lies,” Proceedings of the 24th International Conference

on World Wide Web, May 2015, pp. 820-830.

[22] J. N. Robbins, “Embedded Media” in Learning Web

Design, 5th Edition, O’Reilly Media, 2018, Chapter 6, pp.

228 – 232.

[23] K. Takasu, T. Saito, T. Yamada and T. Ishikawa, "A

Survey of Hardware Features in Modern Browsers: 2015

Edition," International Conference on Innovative

Mobile and Internet Services in Ubiquitous

Computing, 2015, pp. 520-524. doi:

10.1109/IMIS.2015.72

[24] A. Vastel, P. Laperdrix, W. Rudametkin and R.

Rouvoy, "FP-STALKER: Tracking Browser Fingerprint

Evolutions," 2018 IEEE Symposium on Security and

Privacy (SP), San Francisco, CA, 2018, pp. 728-741.

[25] A. Vastel, P. Laperdrix, W. Rudametkin and R.

Rouvoy, “FP-Scanner: The privacy implications of

browser fingerprint inconsistencies,” 27th USENIX

Security Symposium (USENIX Security 18) (Baltimore,

MD), USENIX Association, August 2018, pp. 135–150.

[26] W3C, “Mitigating Browser Fingerprinting in Web

Specifications,” W3C Interest Group Note 28, March

2019. Accessed on November 27, 2020. [Online].

Available at: https://www.w3.org/TR/fingerprinting-

guidance/

[27] W3Techs, “Usage statistics of JavaScript as client-

side programming language on websites,” Accessed on

November 27, 2020. [Online]. Available at:

https://w3techs.com/technologies/details/cp-javascript.

[28] Z. Yu, S. MacBeth, K. Modi, J. M. Andpujol,

“Tracking the trackers,” In Proceedings of the 25th

International Conference on World Wide Web (2016),

International World Wide Web Conferences Steering

Committee, pp. 121–132.

74 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 6 - YEAR 2020 ISSN: 1690-4524

	SA899XU20.pdf

