
Development and Evolution of Agile
Changes in a World of Change

Thomas J Marlowe
Department of Mathematics &

Computer Science
Seton Hall University

thomas.marlowe@shu.edu

Vassilka Kirova
Bell Labs Consulting

vassilka.kirova@bell-labs-

consulting.com

Garett Chang
Highstep Technologies

garett@highstep.com

Omer Hashmi
Vice-President, Agile Brains Consulting

ohashmi@agilebrainsconsulting.com

Stephen P. Masticola

SPM Consulting
steve.masticola@verizon.net

Abstract1,2

Agile software development is an approach first codified in the

Agile Manifesto in 2001. This was a statement of core values

that became associated with a set of principles and practices.

Key ideas include early and constant customer involvement,

self-organizing teams that embrace change, rapid delivery of

value, short timeboxed iterations coordinated by a shared list of

items—a product backlog and driven by user stories and use

cases, clean code, test-driven development, and continuous

integration. The values, principles, and practices have permeated

the technical and business world, translated and modified to fit

many domains, affecting both production and management. But

as with any good idea, agility can be misinterpreted, or used

when inappropriate. Even a proper implementation must be

tempered with good understanding of the domain, overall

context, and appropriateness of selected agile practices, and

modified to fit the enterprise, the domain, and the problem. In

this paper, we briefly trace the evolution of agile methods,

placing them within a wider organizational framework, and offer

guidelines for their use.

Keywords: Agile methods, agile software development,

software engineering, Kanban, Lean, Scrumban, scaled agile,

agile in context, automated regression testing, DevOps, business

agility

1. Introduction

We present an overview and perspective on the current state of

“Agile”, both in and beyond the world of software engineering.

The Agile “revolution” began with a product-driven, team and

customer-centered view of software development, enunciated as

a set of priorities and values in the 2001 Agile Manifesto [4].

This became associated with a set of principles and practices.

Key ideas such as early and constant customer involvement,

embracing change, self-organizing teams, short timeboxed

iterations coordinated by a Product Backlog and driven by user

stories and use cases, emergent requirements, and frequent

delivery of usable minimal viable products (MVPs), have

rapidly permeated software development. Other important ideas

included clean code [77], test-driven development, refactoring

[34], continuous integration, and transparency. Associated with

agile methods is the notion of a situation-dependent but

generally relaxed view of formality, when not needed. This has

1 This paper itself evolved through team interaction from a synthesis of

[75] and [76].
2 The authors wish to thank Fr. Joseph Laracy of Seton Hall University

for technical editing of this document.

often been misinterpreted as lack of discipline or need of

documentation, and has led to many pitfalls and disappointments

in the implementation of agile [82].

A primary motivation for preferring agile processes to waterfall,

spiral, and other software engineering approaches [91] is that

developing software cannot be treated as a theoretically well-

defined process in practice. Schwaber [100] differentiates

between “theoretical” processes (i.e., those which can be

specified in a white-box manner from well-understood a priori

parameters) and “empirical” processes (i.e., those which are not

predictable from theory.) Empirical processes cannot be

successfully managed through up-front planning alone. Instead,

they must be treated as black boxes and constantly

monitored. Schwaber correctly notes that, software development

processes are empirical because
1. Applicable first principles are not present

2. The process is only beginning to be understood

3. The process is complex

4. The process is changing

This argues strongly against a process relying on upfront

planning in detail, and equally strongly suggests moving toward

an approach controlling the process of development as it occurs,

tolerant of change, and without a detailed advance plan. Table 1

presents a more complete description of the differences between

theoretical and empirical domains.

Theoretical Modeling Empirical Modeling

1.

Typically needs fewer measurements;
experimentation only for estimation
of unknown model parameters

Requires extensive measurements as it
relies entirely on experimentation for
the model development

2.
Provides information about the
internal state of the process

Provides information only about that
portion of the process that can be
influenced by control actions

3.

Promotes fundamental understanding
of the internal workings of the
process

Treats the process as a “black box”

4.
Requires accurate and complete
process knowledge

Requires no detailed process
knowledge—only that output data
obtainable in response to input changes

5.

Not particularly useful for poorly
understood and/or complex
processes

Often the only alternative for modeling
the behavior of poorly understood
and/or complex processes

6.
Naturally produces both linear and
nonlinear process models

Requires special methods to produce
nonlinear models

7.

Naturally and effectively detects
anomalies, leading to correction or
model revision

Requires effort and interpretation in
detecting errors and anomalies, and in
subsequent correction/revision

Table 1. Theoretical & Empirical Modeling (cf. Schwaber [100])

“Agile” thinking has not remained fixed but has evolved as a

worldview. It matured into a number of established development

methodologies such as XP [10], Scrum [101] and Crystal [103],

affected the earlier, related Lean and Kanban methods [89], and

scaled up into approaches for entire organizations, e.g., SAFe

[98, 99] and LeSS [69], enabling adoption of agile practices and

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 7 - YEAR 2020 61

development of agile competencies across teams, programs,

product lines and organizations, not only for development

processes but corporate management and supporting activities as

well. Further, via DevOps [25, 111], agile impacts operations,

marketing, vendor management, and customer support, as well

as development and operations activities of IT organizations,

with continuous and concurrent development, delivery, and

deployment.

Agility as a worldview and process discipline has spread widely,

with the appropriate changes, into many areas, including

management and business processes. Together, Lean and Agile

have also established themselves as leading methodologies in

financial and insurance sectors, healthcare services,

manufacturing, and other domains (see [18]).

But as with any good idea, agility can be taken to extremes. It is

sometimes viewed like an infallible religion, and at times used,

contrary to its core message, as a mere buzzword to put off

difficult questions and pressing decisions. Agility is not without

costs and tradeoffs and may require or benefit from modification

or combination with other approaches, even within the software

engineering domain. It is not a silver bullet, but a powerful

approach that where warranted can be modified and

implemented in a way that properly reflects the target domain’s

context.

The agile community distinguishes capital “A” Agile

development methods from lower-case “a” agility as a trait, e.g.,

organizational agility—a results-driven embedded attribute of an

organization, bringing resilience, speed, flexibility, attunement,

and preparedness to deal with market changes and challenges, as

a core organizational competency and source of competitive

advantage. Here we focus on “Agile” methods, but use “agile”

in both senses.

The rest of this paper is organized as follows. In Section 2, we

consider the context that gave birth to the Agile Manifesto. In

Section 3, we explore the evolution of Agile methods and

examine challenges in their adoption. Section 4 reviews the

modern agile development practices and the spread of agile

thinking to other facets in technology organizations. In Section 5

we examine situations calling for modifications to agile

frameworks and discuss enablers of agile adoption. Finally, in

Section 6 we present our conclusions and future directions.

2. The context for the birth of agile

The birth of agile methods must be understood in the context of

the history of software engineering. In the early years, without

high-powered computers, user interfaces, graphics, or the

Internet, most programs either encoded mathematical algorithms

(often for experimentation or scientific/engineering applications)

or managed simple data processing, delivered by the IT

department to experts or specialists to use offline. There was no

established software engineering discipline [81]—programming

was largely ad hoc.

With a larger set of users, and a wider set of applications

including process control and complex data processing

supported by databases, the discipline of software engineering

emerged. The principal software development model was the

Waterfall [91], a feature-oriented, document-driven model with

sequential phases (requirements gathering, specification, design,

implementation, testing, deployment, and maintenance). This

was a carryover from computer hardware design processes,

influenced by algorithm design, where it had generally worked

well. While the flow of information between phases was fairly

clear, structures, activities, and notations differed between

phases, were often ad hoc, and initially lacked the discipline of

providing feedback to earlier phases.

Even enhanced, but still mainly sequential models (V-shaped,

Incremental, Spiral, Concurrent Development [91]) with

multiple development passes, feedback, and incremental

development converging on a final work product, proved

inadequate for many applications, especially with the advent of

personal computers and the Internet, a greatly increased user

community, and computer applications with graphical user

interfaces, configurability, user-driven actions, and more,

resulting in continuing difficulties. Projects became caught in

the Project Triangle of Scope, Time, and Cost, to which one

should add (desirable) Quality—with the scope largely

predefined by contract and development along a broad frontier

rather than narrowly focused, constraints on time and cost

become onerous. As Sutherland [5] observed, attempting to

control an empirical process such as software development with

a predefined plan is an exercise in futility. Such a process has to

be watched continuously and adjusted frequently to reflect the

agile forces, see Figure 1.

Figure 1. The iron project triangle and agile forces at work

It is also understood that many software errors resulted from or

remained undiscovered when using classical development

models, especially with late testing. (For a nuanced discussion,

see [8].) On the other hand, these classical methods have been

extended and enhanced over the years, e.g., with extensive

simulation and prototyping, and often with test-focused

approaches, and still remain viable options for development of

certain classes of applications in specific domain and project

contexts.

This perceived “software crisis” was partially mitigated by an

increased use of object-oriented (OO) languages [28] and

modeling, and software engineering (OOSE) approaches,

focusing on application entities and their responsibilities. These

were facilitated by improvements in compilers, computer

architecture, power and storage [43], development tools such as

version control systems [38, 39], testing tools [97], software

architectures [105], and integrated development environments

(IDEs) [94], made even more significant by distributed

computing and the Cloud.

This allowed for a more comprehensive and flexible approach to

development, with the introduction of the (Rational) Unified

Process (UP) and the Unified Modeling Language (UML) [51,

52], and slightly earlier, design patterns—a catalog of useful

idioms and guidelines [35]. The Unified Process replaces

classical “phases” with concurrent workflows and adds a

dynamic view with four repeatable phases—inception,

elaboration, construction and transition. It also offers a third

dimension of best practices such as UML models and

component-based architecture. UML and the UP provide a series

62 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 7 - YEAR 2020 ISSN: 1690-4524

of consistent models with fairly straightforward transitions and

low representational gap—although not without requiring some

effort and judgment. Requirements are driven by use cases and

scenarios, tracing user interactions with the system, including

problems and exception flows, with documentation of extra-

functional concerns in a supplementary specification [67]. The

process is iterative and naturally incremental, facilitated by

bounded scope use cases and (largely) separate development,

extension, and modification of objects. OO development also

increased reuse (often with modification) of code and decreased

code duplication, as did the use of design patterns [35, 67, 77].

For all of that, in many development shops, the Unified Process,

as used initially, required formal development and

documentation of sets of artifacts corresponding to groups of

UML models for each workflow. Moreover, while development

would be iterative-incremental, the work products of early

iterations were not necessarily “deliverables”—that is, did not

always provide working software with clear value to the

customer, leading to some of the same schedule and budget

problems as had been encountered in the Waterfall era.

3. The evolution of agile software engineering

3.1 The Agile Manifesto and agile methods

In 2001, seventeen expert software practitioners and thought

leaders in the OOSE community set forth the Agile Manifesto

[4], a statement of values followed by a list of design principles.

They stated, “Through [our] work we have come to value:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan.”

The (rephrased) principles and guidelines included:

1. Continuous customer interaction, with early and continuous

delivery of valuable software, on a timescale of a couple of

months to, by preference, a couple of weeks.

2. Preparing for and adapting to changing requirements, even

late in development.

3. The need for management, other business roles, and

developers to work together daily throughout the project.

4. Valuing and trusting motivated individuals and self-

organized teams as key to projects, giving them the

environment and support they need, and trusting them to

get the job done.

5. Face-to-face is the most efficient and effective method of

conveying information to and within a development team.

6. Software development should prioritize simplicity,

technical excellence, and good design. Working software is

the primary measure of progress.

7. Agile processes promote sustainable development. The

sponsors, developers, and users should be able to maintain

a constant pace indefinitely.

8. At regular intervals, the team should reflect on how to

become more effective, then tune and adjust its behavior

accordingly.

These principles and beliefs were soon codified into “agile

methods” and frameworks such as Extreme Programming [12]

and Scrum [101]. Following these principles, agile projects are

structured into short iterations (now typically 2 weeks), during

which all relevant activities/workflows, including definition of

emergent requirements, requirements analysis, architecture,

design coding, testing, and integration take place continuously

and as much in parallel as practicable. The process structure is

iterative-incremental: each iteration is expected to deliver

working code, continuously converging on the product

envisioned by the customer and the developers (see Figure 2).

These approaches emphasize dynamic discovery of requirements

through ongoing customer interaction, definition of user stories,

and fast and continuous delivery of value to the customer. (In

some cases, the customer may be in-house, and, for software

developed “on spec,” one may then have to rely on experts and

prospective users.) Formalism is deemphasized except where

clearly is needed, or required for reasons such as compliance or

security, but this doesn’t imply lack of coding or organizational

discipline. A key point, often not recognized or appreciated but

central to agile methods, is the effective use of backlogs for re-

focusing project effort and agreeing with the customer on scope

adjustments/reduction (“Trimming the Tail”) when needed.

(Less frequently, this can actually improve or extend the

project.)

Figure 2. Incremental vs. iterative development (Hashmi [41])

In summary, agile methods appear best-suited for a capable,

cross-functional team responsible for a feature, or a component

such as a microservice, of a project, for fairly well-understood

problems, in domains with which the agile teams have a certain

degree of comfort.

3.2 Issues with agile process methods

Agile approaches spread quickly, but not without problems.

Some groups, typically well-rooted in past practice, have

misinterpreted parts of the guidelines and failed to align on the

vision [45]. Others have followed the guidelines too rigidly,

never realizing the expected benefits and stopping

transformation activities too soon. And some have interpreted

the scope of applicability quite narrowly, focusing only on

development teams, leaving all other functions such as

marketing or IT to work in their prior mode. The introduction of

DevOps [25, 104], which initially enabled IT organizations to

speed up their processes, spread to development organizations

and helped create a uniform approach for rapid delivery of high-

quality software features and solutions to the enterprise, markets

and customers. Integration of agile and DevOps has further

enabled external collaboration, partnerships, and the creation of

value networks.

Two early failings, common to both the “misinterpreters” and

the true believers, were to consider the entire application

development process as covered by iterations, and all

requirements as being equally suitable for continuous discovery.

Notably, difficulties arose when, as discussed below, extra-

functional/non-functional (NFR) requirements, such as latency,

scalability, reliability, security, safety, or usability [91], were

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 7 - YEAR 2020 63

treated as entirely evolutionary. Even a bigger problem arises

when one assumes that all architectural decisions can be made

during the iterations, and not allowing time to set a clear

architectural direction at the start of the project. As agile

matured, these issues have been recognized and addressed by

such practices as the “architectural spike” [10] or “architectural

runway” [69, 97]. Still another problem, particularly among

management, is to assume that good people and good tools will

automatically result in good development, without considering

the need for training and team development. Finally,

organizations often bypass reflection (at least, beyond team

retrospectives) when things are going well, with some finding it

difficult to fit reflection into the organizational culture [78].

In addition, there are always those who are taken by buzzwords,

and whose understanding of agility in some cases is almost

directly opposite to the original intent—that one could begin

development without negotiation with the customer, just casual

interaction, and without much effort in exploring or

documenting requirements. Thankfully, most such enterprises

either mature or disappear [119].

More importantly, using an agile process does not mean one can

dispense with any of the following:

• A business case analysis for the development organization

and for the client/potential customers, to consider the

dimensions of the project, partner capabilities, the

desirability of the work, the levels of interaction, and the

expected Return on Investment (ROI) and resource

estimation, as far as can be determined a priori. The

determination of technical feasibility, especially with a high

degree of innovation or novelty, or deployment on a new

platform, is also critically important. Often these questions

are investigated in a preliminary Exploration phase (called

“Iteration Zero”) before the first “development” iteration.

• Identifying, understanding, and accommodating essential

requirements and risks, particularly external risks, and

binding extra-functional/nonfunctional requirements such

as accessibility constraints, security, privacy, safety, and

timeliness in real-time applications, from the start, as

largely inflexible constraints, including institution of

standards for secure code (see [48, 117]) and safety [42].

This does not mean, however, that MVPs and initial

releases need to address all of these in full generality.

• Serious and ongoing quality assessment beyond the

“working software” metric, careful reviews and demos, and

honest retrospectives to recognize the success and evaluate

needed changes in project, process, and team execution, but

never to assign blame to individuals (although this may not

always be taken as seriously or objectively as it should be),

with simulation, additional metrics, and other approaches

for software quality assurance (SQA) [50]. This is

especially important for features that cannot easily be

demoed as functionality, either because they do not address

increased user functionality, as in improved code

refactoring feature, or because they relate to handling of

physical emergencies (e.g., cardiac arrest) that cannot or

should not be created for a demonstration.

• Last but not least, team preparation: one should not expect

the team, or even more so a group of individuals who have

yet to become a team, to learn new domains, new types of

applications, or new language features, tools and practices

on the fly while developing the application. There should

be a certain degree of expertise at the start and if necessary,

training, coaching, and consulting should also be made

available to the teams and organizational management.

4. The use of agile in software engineering

In this section, we further consider how the practice of agile,

object-oriented software engineering has itself evolved since the

Manifesto in 2001. We look first at the technical aspects, and

then at the impact of agility on technical and corporate

management.

4.1 Modern practice

Some practices and approaches have been part of agile methods

from the start. Agile methods preserve, and if anything,

reinforce the (focused) use of systems of diagrams and notation

such as UML, although with reduced formality. These methods

also employ, even more than older OOSE approaches, patterns

for design, requirements, testing, and other activities, together

with refactoring [34, 61] guided by design patterns at the one

end and driven by “code smells” [34, 77] and technical debt [23,

71] at the other. Further, they rely on tools including source

control systems, test automation frameworks, especially for unit

and interface testing, lightweight static code analyzers, and

continuous integration environments.

Beyond this core, there have been some substantial

developments in design and coding practices. While none of

these practices violate the initial agile vision, each has

evolved/enhanced the approach that an agile team might take in

developing software, and even more so, the appearance of the

resulting design and code, and often, the “form” of the resulting

product.

• Component-, service-, or microservice-based software

architectures, including specification and testing of

component interfaces, possibly with mock objects and the

use of design patterns such as Adapter and Façade [67,

77].

• A greater emphasis on full-stack development, largely as a

result of mobile, web, Internet of Things [IoT], and data

science applications. A full stack might include

components such as: user interface, services and API, data

and third-party services, application code, and business

logic.

• Incorporation of Aspects [3, 13, 56] to varying degrees, or

using dedicated microservices to handle cross-cutting

concerns at the software architecture level, such as logging

or security and access control services. Aspects were

originally considered “non-OO,” impractical, or in some

cases dangerous, but are now generally accepted, and are

integrated into languages and frameworks including Java8

and Spring, and recommended for implementation of larger

or more complex systems [77].

Aspects still need to be used with care, and agile teams

need to adhere to the coding conventions that make aspects

work (such as prefacing set-method names with the particle

set). In addition, static code checking will be needed to

ensure that AOP conventions are adhered to, or at least to

flag potential trouble spots.

• Functional language features are now part of the agile

toolkit, with languages such as Kotlin or Scala, and features

such as lambda expressions in Java [59].

64 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 7 - YEAR 2020 ISSN: 1690-4524

• A trend, noted in [77] as a significant change, toward

shorter, more cohesive classes and methods, with

dependencies in modes with low coupling [91] and reduced

visible state, plus idiomatic situations such as collections

and their members, especially in heavily used, critical,

high-risk, or frequently modified code segments (“points of

protected variation” [67]).

• Incorporation of robust automated testing, at all test levels:

unit, component, subsystem, system, and deployment levels

with functionality and performance aspects tested to

customer requirements. See Section 5 for details.

• More robust change management at both technical and

management levels [9], better automated traceability

analysis [30, 72], and in general, more powerful, efficient,

and effective static and dynamic analyses [66].

• An increased focus on internationalization [112]. These

issues, however, are not unique to agile, and are not dealt

with further in this paper.

• A greater emphasis on explicit consideration of run-time

concurrency, with implications for design, programming,

and testing [77].

• Approaches to deal with exploration and discovery and

with continuous deployment.

Alone or in combination, these and other software technology

changes and enhancements may introduce changes in the

software architecture and new or different dependencies

between the product backlog user stories and related tasks,

affecting the content, ordering, and grouping of design and

coding activities, and as such the content of the intermediate

products. For example, designing and implementing a security

or access control aspect can impact the order of design tasks and

the technical content of iterations; even the implementation of a

straightforward logging aspect will simplify (but lightly

constrain) the design and coding of subsequent components and

impact the following iterations.

4.2 Agile, Kanban, and Lean

Agile has both influenced and been influenced by Lean

development [90] and kanban practices, and various enterprises

have explored blending disciplined agile approaches such as

Scrum with kanban and lean practices.

In the early development of agile, kanban was seen as a different

and competing process management methodology, and this

persists in some quarters [15]. Later developments integrated

kanban into agile processes, taking advantage of its ability to

control work in progress and focus an agile team’s effort on the

most important work ready to proceed.

The word “Kanban” literally means “work card” in Japanese.

Kanban originated in the Toyota Production System as a method

to precisely match effort with demand via a “pull” process of

resource allocation. Kanban cards for parts production contained

the type of part needed, how many were needed, and the stage of

completion. Workers free to accept work would take a kanban

card from a board of parts demands, attach it to a cart, and

update the card as the required parts were placed on the cart and

produced. A key concept of kanban is to limit the work in

progress (WIP) to prevent inefficient context switching by

workers; therefore, only a bounded number of kanban cards can

be in progress at any given time, with that bound determined by

the team’s capacity to execute concurrent work items [46].

In more recent times, kanban is seen to fit well into agile at the

team level and above [99, 114]. In the SAFe 5.0 process [96],

kanban is an optional element used at the team level to control

the completion of features within a sprint. Figure 3 shows how a

team can use a kanban board to limit and control work in

progress. A kanban board also fits well into agile processes as a

“big visible information radiator” to make everyone concerned

aware of the team’s status and progress [2].

Highstep [44], initially a small company with limited resources,

invested in development, maintenance, and support, has been

slowly moving towards incorporating kanban principles in its

software development process. Today, Highstep is a mature

Scrumban organization, using an approach blending kanban with

the discipline of Scrum [31, 37], but relaxing its strict time-

boxed approach, adding more flexibility to deal with

unpredictability, particularly in the service mode, without overly

stressing personnel or resources.

Figure 3. The kanban board as a process element (after [102])

4.3 Testing, test automation, and quality assurance in agile

Agile processes almost universally use continuous integration

[27, 79] to continuously update a codebase shared by the entire

agile team as features are created and modified. This requires a

paradigm of testing different from that of the waterfall model.

Even in the V-model extension of Waterfall [80], where a test

strategy and partial test suite are developed early, there is only a

single build-and test at the end of the project. In contrast, agile

must execute the same V-model every sprint (or even test within

a sprint), since any sprint can induce regressions, i.e., backward

steps in development or changes that break formerly stable

functionality. To prevent regressions from accumulating in the

solution under agile development, the product must be

regression-tested periodically, and ideally every sprint. We

examine the support needed for this level of regression testing.

A mature software product can have thousands of features. Each

must be tested when it is possible that development might break

it (change-impact testing), and also periodically, even where

breaking changes are not predicted (general regression testing3)

[55]. Tools such as automated change management [9], program

analyzers [66], and traceability bases [30, 72] can often predict

the features or support elements that might be impacted by a

change, but it is not possible to predict every change without

being overwhelmed with false positives. Therefore, general

3 Regression testing is not a test level and not limited to product or

system testing; rather, it is an approach to be applied at every test level:
unit, component, subsystem integration, product, and system.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 7 - YEAR 2020 65

regression testing, in addition to change-impact testing, is

needed at the unit, component, subsystem, and system test

levels. But manual regression testing at any test level is too slow

and too labor-intensive (and too often imprecise) to be practical

for agile development. Therefore, to produce acceptable-quality

products, automated regression testing is essential.

An additional set of testing concerns arises with the use of

aspects [10, 63], especially if test tools are not aspect-aware.

Changes in features implemented with aspects, or the effects of

changes in the code served by aspects (pointcuts), may not be

visible in the implementation. Various problems can thus be

introduced, including but not limited to type errors, non-

deterministic semantics, and incorrect exception handling. In

practice, many of these problems can be guarded against by

using an automated unit test tool and test suite enriched to check

for aspect-related problems. Regression testing must likewise be

extended to deal with these considerations.

Test-driven development (TDD) [3] is often mistakenly

identified as the single mechanism for developing test

automation. TDD, while extremely useful, must be broadened

from unit testing. Automated component, subsystem, and system

tests can, and should, be created or updated while the

architecture and interfaces of the system are being worked on.

Finally, to keep the product stable and the test base healthy, it is

important in agile development to quickly identify and correct

the cause of any failed automated test case. A failed automated

regression test case may be due to any of the following:
• The feature has genuinely been broken due to a change in

the code.

• The feature still works properly from a customer

standpoint, but the automated test case has found

inconsequential changes in behavior.

• There is a defect in the automated testbed or test case.

To avoid continually breaking builds, agile teams should have

testbeds at their disposal at all times, and should run regression

tests on any code before it is checked in to the build. Automated

testing is typically used in agile environments as part of the

continuous integration process, as well as at the developer level

before new code is integrated.

4.4 Continuous deployment and configurability

There have been significant advancements in deployment

strategies, particularly for continuous deployment [105], in

which updates are continuously rolled out for customer

feedback. The transition from successful testing into an actual

production environment has often been a cause of concern. The

intent is to cut over as quickly and as smoothly as possible in

order to minimize downtime. One such modern strategy is the

Blue Green deployment [32], with two near-identical production

environments—a Blue Environment and a Green

Environment— one active, serving the Production traffic, and

the other as a staging environment for the final testing of the

next release. Once a change is ready, it is released and the traffic

redirected from the current Production Environment to the other,

switching their roles. Not only does this allow for speedier

deployment, it also supports rapid roll-back in case something

goes wrong.

A related technique, used for continuous delivery, is hypothesis-

driven development (HDD) [17, 89], resembling the cycles of

science’s hypothesis-and-test or of mathematical modeling,

where experiments consist of tweaking the product, including its

user interfaces and graphics elements, and gathering and

analyzing user interactions, data, and feedback.

Another advanced technique is Feature Toggles, or Feature

Flags [33]. Feature Toggling allows safe deployment of feature

sets to a controlled user base by providing alternative code paths

in the same deployment unit. Two major factors to be

considered in the implementation of toggles are longevity (the

expected feature toggle lifetime) and dynamism (its velocity of

change). Release Toggles support Continuous Delivery by

allowing in-progress latent, possibly incomplete or even

untested, code to be shipped in a disabled flag state, and

toggling it active once released.

 Feature Activation, an analog of Feature Toggles, although

related more to configuration management and access control,

offers additional options. It can be used by developers, by

software providers, by enterprises, and by individual customers

or users. Developers can use it to support beta-testing [55,

109]—evaluation of a new or improved feature or interface by a

small group of ordinary users—or as an adjunct to HDD, for

comparative and concurrent study of different user interfaces or

other features.

A software provider may use Feature Activation for

pricing/licensing options or trial periods, or to provide variants

for different user communities with different access permissions,

data visibility, and views (for example, medical records software

used by medical professionals, administrators, patients, and the

public at large). IDE providers can offer academic versions,

with limited access to advanced features but with student-

oriented help and communication modules. Enterprises can use

it as a first level of access control, and both enterprises and users

can select a configuration when installing or personalizing

software packages.

On the other hand, both Feature Toggles and Feature Activation

are a good fit for some solution domains, but not all. They work

in domains in which features can be turned on and off quickly

and autonomously by the development organization or software

provider, such as social media sites and apps with live updates,

but not in domains where regulatory agencies must pre-approve

new or changed features, or where there is high life-safety or

economic risk.

4.5 Technical and corporate management

Three facets of technical management role and practices in the

agile world can be distinguished: “caring” about agile teams,

incorporating agility in technical management, and interfacing

between agile development teams and corporate management, as

well as other organizations and teams. The first generally means

pulling back from detail management of team activities,

allowing teams to be self-organizing and self-directing, while

ensuring they have all the needed resources and expertise to

deliver quality products, and further enabling individuals to

develop their skills and progress toward their career goals.

Dedicated product owners (at different levels), assisted by

technical managers, must maintain oversight: ensuring that

product backlogs reflect the original and emerging requirements,

coordinating client interaction, and keeping track of progress,

backlog accuracy and prioritization, budget, and resources.

66 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 7 - YEAR 2020 ISSN: 1690-4524

The transition at this level is not all that difficult, if sometimes

bumpy, for firms that have understood and embraced agile

values, but has been difficult when either the technical managers

or their superiors did not understand or did not buy into agile

methods, or were seriously invested in older approaches. The

interface role in particular is problematic for a technical

manager whose teams wish to follow agile processes, but who

faces lack of understanding, support, or enthusiasm across

technical and business management. This has led to enterprises

specializing in shepherding companies in the transition to

agile/lean philosophy and methodology (see, for example [41]).

Agile also extends beyond the product- and client-centered,

incremental iterative development model for a single product,

into continuous development. Agile software engineering works

in concert with the DevOps model for software delivery and can

effectively address facets like security: consider DevSecOps [70,

87]—a DevOps model that addresses security and privacy early

and throughout the continuous exploration, development,

integration, and deployment activities.

The flexibility of agile methodologies does not mean that every

prior problem goes away. In particular, resource estimation still

matters. Brooks’ Law [14] still applies—adding new personnel

late in the project may be counterproductive, as it may take more

time and effort to get them up to speed and incorporate them in

the team than they can possibly add to the project. Likewise, late

addition of new tools or resources may not help, if it takes the

team longer to become comfortable with them than the potential

gains from their use. (But this of course does not argue against

taking such actions to cope with exigent problems.)

Also, as can be expected, the self-organization, autonomy, and

role-driven leadership of agile teams has boundaries, except

perhaps in the smallest of startups, where almost everyone is on

one team. In addition to a product owner, there are often

additional roles, including but not limited to a Tech Lead, Line

Manager, and typically a scrum-master or agile coach. The

technical leader guides the technical implementation, and

coordinates and ensures that role-driven leadership doesn’t drift

too far from the product vision, while the Line Manager assists

on the administrative role of team management, resource

allocations and work-life balance. The scrum-master, or team

agile coach, serves as the agile evangelist, helping the team

embrace agile principles, guiding the team on overall agility,

and helping with team cohesion, while also resolving

impediments and ensuring resource availability, and serving as a

channel for management and leadership interactions. (With its

mix of technical, administrative, support, and bureaucratic

functionality, this position can often be hard to fill on an

ongoing basis.) In larger organizations or for larger projects,

there may be higher levels of governance—a product owner for

an entire project or product line, a coordinator of multiple teams,

and corporate management with responsibility for technical

areas and/or customer contact.

Modern agile approaches extend up and out into corporate

management and organizational modes of operation. While the

technical guidelines are not fully applicable, agile management

and business processes management emphasize agile features.

Key activities include building interdisciplinary teams, strong

and pervasive intra-enterprise communication, rapid decision

making, frequent retrospectives, continuous customer interaction

and product delivery, and adaptability to changing market

demands, customer expectations, and unexpected events.

Coordination, alignment, and continuous improvement are

achieved through regular checkpoints to assess progress, status,

and plans, realign to strategic objectives, and engage in periodic

retrospection.

5. Applicability of agile methods

In this section, we first consider situations in which agile

methods have limited applicability or need modification or

extension to the nature of the domain or project. We then

highlight key business enablers of agility.

5.1 Modifications and limitations

Critical extra-functional concerns may require some

modification of agile practices. The need for an extensive (but

possibly not complete) initial understanding of security, privacy,

and accessibility constraints has resulted in enhancements of

agile practices analogous to DevSecOps [70] and Privacy

Engineering [40, 68]. Likewise, dealing explicitly with issues of

timeliness, safety, and external interaction in real-time and

active systems, requires changes in models and tools (compare

the extensions in Real-Time UML [26]), and modifications in

technical facets of agile processes, to accommodate, among

other changes, greater formality and extensive system, stress,

and platform testing.

Limitations on projects fall largely into five areas: product size

and complexity, the development structure for large projects, the

nature of the application, requirements for formality or

consultation, and the need for creativity, novelty, and

innovation.

First, agile may not scale well for large, monolithic components

beyond a certain size, complexity, or level of distributed

execution. Other software architecture approaches may be

needed to establish a high-level decomposition and specify

stable interfaces [73]. While agile development can readily

handle transactional systems and other data-rich applications,

including most data science applications, some system and data

issues need to be addressed in advance. These include data

modeling and representation issues, as well as protocols for

interaction with smart devices (as in the IoT). Likewise,

significant data collection and data cleaning where needed must

precede timeboxed iterations resulting in software deliveries.

However, the spread of microservices and containers, and the

use of design patterns including database connections, facilitate

the decomposition, development, and deployment of bounded

context, cohesive services, thus somewhat mitigating the

problem [58].

Second, large projects have required some adjustments [11, 24].

Agile methods for software development have been team-

focused, but large projects require multiple teams, often

distributed across multiple sites or in different business entities,

and across time zones and countries. Business and technical

processes need alignment [7, 53], particularly with respect to

two specific concerns. First, as originally envisioned, agile

methods required frequent, preferably face-to-face

communication between the team members, and second,

required teams to be in frequent communication, and each team

to have continuous contact with the customer. The first problem

has been largely resolved by larger-scale agile frameworks [69,

97], and by strategies including defining components with

cohesive business logic and clear boundaries [74]. Inter-team

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 7 - YEAR 2020 67

communication and collaboration is enabled by a combination of

electronic means and visits [122]; customer contact can be

handled by identifying a customer advocate—often the product

owner or a designee. Remote teams [95] require some of the

same adjustments, and others, as has become increasingly

apparent in the year of the pandemic. At the other end of the

spectrum, agile processes may need some modification for very

small projects or teams [36].

Third, standard agile practices may not be appropriate for certain

highly mathematical applications. Mathematical, statistical, and

algorithmic software often has well understood specifications

and requires minimal customer contact, except possibly for UX

issues. Also, some process control systems, as in chemical

manufacturing or power generation, or protocol-centered

components as in networks or security algorithms, may not be

well-suited for fixed-length short iterations and deliverables.

Fourth, some classes of applications may require a higher degree

of compliance, governance, or formality. These may relate to

safety, security, privacy, or intellectual property, have

significant timing constraints, or involve cyber-physical

systems. There may be legal, regulatory, or standards

requirements for formal artifacts or even use of formal methods

in domains including health, military, and national security

applications. Others may require expert approvals at specific

points, in addition to extensive customer contact. Another,

related issue is getting signoff from regulatory bodies; these

typically do not operate in an agile mode and certify only

finished products rather than intermediates.

There is an increased interest in and use of hybrid methods,

combining sequential and agile methods and practices for large

system development [49, 62, 85, 113] and industrial applications

[92] in particular. Hybrid approaches are also proposed to

accommodate large or staged process deliverables [29, 85] or the

need for more substantial requirements engineering [64]. IoT

development also requires novel approaches to testing and

dealing with non-determinism; a modified methodology for IoT

application development is presented in [123] (see also [22]).

Nonetheless, agile methods with appropriate practices will

almost always be the right choice for the development of

individual components and user interfaces. Some guidelines

remain good practice beyond their strict domain of applicability:

identifying critical and core components, functionality, and

exceptions, continuous client contact, regular and frequent team

meetings supplemented by regular contact between teams,

developing backups for key personnel, test-driven development

including interface testing, prioritized backlogs, retrospectives,

and more.

5.2 Dealing with exploration and discovery

Finally, agile development seems a natural fit for applications

with a moderate degree of uncertainty about the feasibility of the

solution and incremental innovation rather than fundamental

discovery. Agile was not originally focused on speculative

exploration or fundamental research—where major discovery,

new algorithms, data structures, or models may be needed, or in

data science applications that rely on pattern discovery using

artificial intelligence, machine learning, or data mining. In such

explorations, timeboxing may be inappropriate, backlog content

may be hard to identify, and rapid or continuous delivery of

partial solutions may not be possible.

But this does not mean that research cannot occur in the context

of agile development. Indeed, agile teams frequently realize at

some point that research is needed to implement planned

features, either when they either do not know how to solve a

specific problem and must invent a way, or when they must

evaluate alternative approaches for solving the problem.

XP invented the concept of (research) spikes as time-boxed

research efforts to solve highly specific problems. As research

spikes are executed, the team gains confidence that they have

workable solutions (or that a satisfactory one cannot be found,

and they are at an impasse) [120]. Spikes also appear in

implementing agility at organizational level, speeding up

decision and learning cycles, and placing trust in individual

teams to enable fast response to feedback and changes. This

drives fast delivery of value, but also allows for “fail fast”

cycles, fast corrections, and the initiation of discovery and

innovation spikes where needed [93].

5.3 Business enablers of agility

The organization needs to build an agile culture as a foundation

for operational agility across the entire enterprise. Managers and

technical leaders must not just understand agility, but also serve

as advocates, willing to argue for the benefit of what some might

consider wasteful team activities: team meetings, time spent

refactoring, and especially reflection. Technical and corporate

management should understand agile processes, team dynamics,

indicators of progress, the nature of backlog management, and

metrics—not just working software delivered, but other

measures of progress and quality. As mentioned above, this may

entail engaging agile transformation consultants, with

workshops and training for both technical and management

staff—and perhaps for support staff such as Human Resources

personnel as well.

As importantly, the client/customer must be open to ongoing

contact and collaboration, alert to changes in environment and

requirements, and accepting of deliverables at intermediate

stages or continuously. The customer must also be willing to

share information and provide feedback, early and continuously,

and be comfortable with a contract that accepts late decisions.

The customer should ordinarily not interfere with design or

implementation details, except if they affect interfaces or

agreements on emergent requirements.

Some specific practical issues with using agile in deliverable

products need to be addressed in practice. We have already

discussed issues with customer contact, but larger enterprises

have additional challenges. Such businesses often have, not a

single customer, but thousands to millions of users. Involving

significant numbers of end customers in the day-to-day

operations is almost always impractical, and businesses must

modify agile to address this reality. For low-risk applications

like social media platforms, it may be possible to continuously

roll out updates and collect customer feedback [105]. Aspects of

this approach have been codified as hypothesis-driven

development (HDD, see above). Table 2 presents a summary.

Enterprise Customers Handling

Small Few Direct team contact

Medium Tens Product owner or designee

Large Hundreds Management responsibility

Global Thousands HDD

Table 2. Customer contact modalities

68 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 7 - YEAR 2020 ISSN: 1690-4524

For high-risk applications, such as life-safety applications,

continuous deployment is impractical because the risk of

breaking the customer’s business (as well as legal and financial

risk to the enterprise) is excessive. For such applications, beta

testing in customer-controlled sandbox environments is usually

effective, especially if the beta-test customers have good tester

mentalities.

Such barriers are comparable to those experienced in data

science: resistance by senior management and technical staff;

poor understanding or implementation; failure to adapt

compatible business practices; failure to commit adequate

resources, including training and team formation/structure; and

failure to adhere to process. Each has one distinguishing

problem: for data science, siloing of expertise and efforts within

the enterprise; for agile processes, poor relationships with

collaborators and clients, although siloing and functional vs.

cross-functional teams can also be a problem for agile and

DevOps [20].

Finally, management and the development team must agree that

agile methods are appropriate for the project at hand [107].

Typically, corporate policy or development group structure

dictates the process for all teams, but some companies such as

Google now allow teams to select their own development

method, as long as boundaries, infrastructure and integration

rules for large or complex, multi-team, multi-site or cross-

enterprise projects are observed.

5.4 Agility beyond software development

Agile as a concept is not limited to software development [60].

Agile methods for business functions and agile guidelines for

customer contact, rapid and continuous development, team

structure, and (implicitly) tool support can be used everywhere

[19, 21, 47, 57]. With modification, they may be appropriate for

development in knowledge-centric projects such as team

authorship, or for just-in-time custom manufacture [116].

Their use for production is more problematic, but agile has been

considered for the development of computer hardware [65, 86,

108], in construction [6, 16, 83], in manufacturing [1, 54, 88,

118, 121], and elsewhere [80, 110, 115]. These studies offer

some reservations, but suggest that agility can offer some useful

process and practice guidelines for particular industries.

6. Conclusions and future work

We have surveyed the birth and evolution of agile methods and

their spread from a software engineering approach to a

methodology for the entire software development enterprise,

also looking briefly at its relation to DevOps and other

approaches, and the interaction between agile and kanban. We

considered the limitations of agile methodologies and the

modifications they require, and described the enabling role

organizational culture, business processes, and policies play.

In sum, the overall focus of agile has evolved, with its core

principles now perhaps closer to the informal “modern”

guidelines enunciated by Kerievsky [84].

• Make People Awesome

• Make Safety a Prerequisite

• Experiment & Learn Rapidly

• Deliver Value Continuously

where “safety” should be understood to embrace not only

physical safety but also binding extra-functional constraints and

critical risk factors including security, privacy, intellectual

property protection, timeliness, or economic risk.

In the future, we plan to look more extensively at the use of

agile in other domains, including 4.0 industries, and to examine

further the relationship and interaction of agile with various

Lean approaches and projects.

Acknowledgments

We would like to thank Nagib Callaos for his support and

encouragement, and Fr. Joseph Laracy, Margit Scholl, Helly

Shah, and Robert Cherinka and Joseph Prezzama, for their

comments and suggestions.

References

1. A. Adomavicus (2018). 5 steps to an agile transformation

in manufacturing. DevBridge, 06/27/2018.

https://www.devbridge.com/articles/5-steps-agile-

manufacturing/

2. Agile Alliance (n.d.). "Information radiator."

https://www.agilealliance.org/glossary/information-

radiators/

3. Agile Alliance (n.d.). "What is test-driven development?"

https://www.agilealliance.org/glossary/tdd

4. The Agile Manifesto (2001). https://agilemanifesto.org/

5. Agility.im. How does an empirical process work?

https://agility.im/frequent-agile-question/how-does-an-

empirical-process-work/

6. M.A. Ajam (2017). Can we use Agile “Methods” in

Construction Project? Applied Project Management, 17

October 2017.

7. S. Ambler (2009). Scaling agile software development

through lean governance. SDG '09: Proceedings of the

2009 ICSE Workshop on Software Development

Governance. May 2009, pp 1–2.

https://doi.org/10.1109/SDG.2009.5071328

8. S. Ambler (2014). The Non-Existent Software Crisis:

Debunking the Chaos Report. drdobbs.com.

https://www.alejandrobarros.com/wp-

content/uploads/old_old/Dr_Dobbs.pdf

9. Atlassian.com (n.d.) Jira--Issue and Project Tracking

Software. https://www.atlassian.com/software/jira

10. A. Bajaj, O.Sangwan (2017). Aspect oriented software

testing. 809-814. 10.1109/CONFLUENCE.2017.7943261
11. M. Balbes (2019). Can Agile Truly Scale to the Enterprise.

The Agile Architect, 06 18 19.

https://adtmag.com/articles/2019/06/18/balbes-return-agile-

enterprise.aspx

12. K. Beck (2005). Extreme Programming Explained:

Embrace Change, 2nd Edition (The XP Series). Pearson.

13. M.L. Bernardi, G.A. DiLucca (2005). Improving Design

Patterns Modularity Using Aspect Orientation. IEEE

International Workshop on Software Technology and

Engineering Practice (STEP 2005), 209-210.

14. F.P. Brooks, Jr. (1995). The Mythical Man-Month. 1995

[1975]. Addison-Wesley.

15. T. Brown (2019). Scrum vs. kanban: Which agile

framework is better? OpenSource.com, 08 08 19.

https://opensource.com/article/19/8/scrum-vs-kanban

16. R. Burger (2019). Agile Construction Management. The

Balance/Small Business, January 21, 2019.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 7 - YEAR 2020 69

https://www.devbridge.com/articles/5-steps-agile-manufacturing/
https://www.devbridge.com/articles/5-steps-agile-manufacturing/
https://nam05.safelinks.protection.outlook.com/?url=https:%2F%2Fwww.agilealliance.org%2Fglossary%2Finformation-radiators%2F%23q%3D~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'information*20radiators))~searchTerm~'~sort~false~sortDirection~'asc~page~1)&data=04%7C01%7Cthomas.marlowe%40shu.edu%7C3eec18500bed4989245c08d89d2f6244%7C51f07c2253b744dfb97ca13261d71075%7C1%7C0%7C637432174124690280%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=DAEPiu15vTQA7jlpx3K%2FSqGmt3QTNNs0mNcs5rp6fPo%3D&reserved=0
https://nam05.safelinks.protection.outlook.com/?url=https:%2F%2Fwww.agilealliance.org%2Fglossary%2Finformation-radiators%2F%23q%3D~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'information*20radiators))~searchTerm~'~sort~false~sortDirection~'asc~page~1)&data=04%7C01%7Cthomas.marlowe%40shu.edu%7C3eec18500bed4989245c08d89d2f6244%7C51f07c2253b744dfb97ca13261d71075%7C1%7C0%7C637432174124690280%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=DAEPiu15vTQA7jlpx3K%2FSqGmt3QTNNs0mNcs5rp6fPo%3D&reserved=0
https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.agilealliance.org%2Fglossary%2Ftdd&data=04%7C01%7Cthomas.marlowe%40shu.edu%7C5aa8f7730a0848b7574f08d89d3fffe2%7C51f07c2253b744dfb97ca13261d71075%7C1%7C0%7C637432245487040191%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=I7mtVQgkdT1EBEZzcb4bPdoNuciXvY4B%2FtNRvS0Hvfg%3D&reserved=0
https://dl.acm.org/doi/proceedings/10.5555/1569136
https://dl.acm.org/doi/proceedings/10.5555/1569136
https://dl.acm.org/doi/proceedings/10.5555/1569136
https://doi.org/10.1109/SDG.2009.5071328
https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.alejandrobarros.com%2Fwp-content%2Fuploads%2Fold_old%2FDr_Dobbs.pdf&data=04%7C01%7CThomas.Marlowe%40shu.edu%7Cbd8c78eb906245a2de9408d89642c4cd%7C51f07c2253b744dfb97ca13261d71075%7C1%7C1%7C637424564016947337%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=IrDt60I%2BB7oGoq2cwRi%2Bz33ZUuS2zq4LksdiXiUF%2Fs4%3D&reserved=0
https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.alejandrobarros.com%2Fwp-content%2Fuploads%2Fold_old%2FDr_Dobbs.pdf&data=04%7C01%7CThomas.Marlowe%40shu.edu%7Cbd8c78eb906245a2de9408d89642c4cd%7C51f07c2253b744dfb97ca13261d71075%7C1%7C1%7C637424564016947337%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=IrDt60I%2BB7oGoq2cwRi%2Bz33ZUuS2zq4LksdiXiUF%2Fs4%3D&reserved=0
https://adtmag.com/articles/2019/06/18/balbes-return-agile-enterprise.aspx?utm_medium=email&utm_source=topic+optin&utm_campaign=awareness&utm_content=20190624+sysops+nl&mkt_tok=eyJpIjoiTWpFME1qVTNNRFprTURreiIsInQiOiJ6Zm5cL1RwYVIzanoxVHBTSEFNVFl3a0M2a2dcL3A3WnIrRHN4Vmlha2M5blpaWnMyc3NROUhqZnNXTTA3Mjl4ekpRVTB1enBrYUVDYm9jWEVcL2FHRHVYM21TQTJmK0MzZFdCVjFNanlDUjB3M0xlVFpjNXpXa1ZwVytqMVUxaDlFUyJ9
https://adtmag.com/articles/2019/06/18/balbes-return-agile-enterprise.aspx?utm_medium=email&utm_source=topic+optin&utm_campaign=awareness&utm_content=20190624+sysops+nl&mkt_tok=eyJpIjoiTWpFME1qVTNNRFprTURreiIsInQiOiJ6Zm5cL1RwYVIzanoxVHBTSEFNVFl3a0M2a2dcL3A3WnIrRHN4Vmlha2M5blpaWnMyc3NROUhqZnNXTTA3Mjl4ekpRVTB1enBrYUVDYm9jWEVcL2FHRHVYM21TQTJmK0MzZFdCVjFNanlDUjB3M0xlVFpjNXpXa1ZwVytqMVUxaDlFUyJ9
https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://opensource.com/article/19/8/scrum-vs-kanban

https://www.thebalancesmb.com/what-is-agile-

construction-management-845374

17. A. Cho (n.d.). Hypothesis-driven Development. IBM

Garage Methodology.

https://www.ibm.com/garage/method/practices/learn/practi

ce_hypothesis_driven_development/

18. CollabNet Versionone (2019). 13th Annual State of

AgileTM Survey.

19. K. Conboy, B. Fitzgerald (2004), Toward a conceptual

framework of agile methods: a study of agility in different

disciplines. WISER '04: Proceedings of the 2004 ACM

Workshop on Interdisciplinary software engineering

research, November 2004.

20. R. Conn (2020). How to Effectively Bridge The DevOps

Skills Gap. OverOps, December 1, 2020.

https://www.overops.com/blog/devops-skills-gap/

21. J. Conroy (n.d.). Can Agile PM be Applied Outside of IT

Environments? https://www.projecttimes.com/articles/can-

agile-pm-be-applied-outside-of-it-environments.html

22. C. Consel, M. Kabac (2014). Internet of Things: A

Challenge for Software Engineering, ERCIM News 98,

July 2014.

23. T. Coq et al. (n.d.). Introduction to the Technical Debt

Concept. https://www.agilealliance.org/introduction-to-the-

technical-debt-concept/

24. P. Diebold, A. Schmitt, S. Theobald (2018). Scaling agile:

how to select the most appropriate framework. XP '18:

Proceedings of the 19th International Conference on Agile

Software Development: Companion, May 2018, Article

No.: 7, 1–4. https://doi.org/10.1145/3234152.3234177

25. DORA—DevOps Research & Assessment (2019). 2019

Accelerate State of DevOps Report.

https://cloud.google.com/devops/state-of-devops/

26. B.P. Douglass (2004). Real Time UML: Advances in the

UML for Real-Time Systems (3rd Ed.). Pearson Education.

27. Duvall, P., Matyas, S., Glover (2007). A. Continuous

Integration: Improving Software Quality and Reducing

Risk. Pearson Education, Inc., 2007.

28. E. Elliott (2018). The Forgotten History of OOP. October

31, 2018. https://medium.com/javascript-scene/the-

forgotten-history-of-oop-88d71b9b2d9f

29. U. Eriksson (2016). How to Make Agile and Waterfall

Methodologies Work Together. White Paper, ReQTest, 6

December 2016.

30. A. Espinosa, J. Garbajosa (2011), A study to support agile

methods more effectively through traceability. Innovations

Syst Softw Eng 7:53–69, DOI 10.1007/s11334-011-0144-5

31. A. Fictner (n.d.). Kanban is the New Scrum.

https://hackerchick.com/kanban-is-the-new-scrum/

32. M. Fowler (2010). Blue-Green Deployment.

https://martinfowler.com/bliki/BlueGreenDeployment.html

33. M. Fowler (2017). Feature-toggles (AKA Feature flags).

https://martinfowler.com/articles/feature-toggles.html

34. M. Fowler (n.d.) Refactoring. https://refactoring.com/

35. E. Gamma, R. Helm, R. Johnson, J. Vlissides (1994).

Design Patterns: Elements of Reusable Object-Oriented

Software. Addison Wesley, 1994. ISBN 978-0-201-63361-

0.

36. A. Gancarczyk, L. Griffin (2019). The Small Scale Agile

Manifesto: These six values enhance agile methodologies

to help smaller teams work more efficiently. 30 Jan 2019.

https://opensource.com/article/19/1/small-scale-agile-

manifesto

37. I. Germanov (2019). Kanban vs Scrum vs Scrumban

(2019): What Are The Differences? 08 12 2019.

https://ora.pm/blog/scrum-vs-kanban-vs-scrumban

38. Git (n.d.). Git—Distributed even if your workflow isn’t.

https://git-scm.com/

39. GitHub Guides (2016). Hello World—GitHub Guides.

https://guides.github.com/activities/hello-world/

40. I. Hadar, T. Hasson, et al (2018). Privacy by designers:

software developers’ privacy mindset. Empirical Software

Engineering 23 (1), 259-289, February 2018.

41. O. Hashmi, O. (2019). Agile Product Delivery [PowerPoint

slides]. Agile Brains Consulting.

https://www.agilebrainsconsulting.net/

42. R.D. Hawkins, T.P. Kelly (2009). Software Safety

Assurance – What Is Sufficient? 4th IET International

Conference on Systems Safety, incorporating the SaRS

Annual Conference. https://www-

users.cs.york.ac.uk/~rhawkins/papers/HawkinsKelly%20IE

T%2009.pdf

43. J.L. Hennessy, D.A. Patterson (2019). A New Golden Age

for Computer Architecture. Communications of the ACM,

February 2019, 62 (2), 48-60.

https://cacm.acm.org/magazines/2019/2/234352-a-new-

golden-age-for-computer-architecture/fulltext

44. Highstep (n.d.). A software design, development, and

delivery company. https://highstep.com/

45. E. Hochmüller, R.T. Mittermeir (2008). Agile Process

Myths. APOS '08: Proceedings of the 2008 international

workshop on Scrutinizing agile practices or shoot-out at the

agile corral. May 2008, pp 5–8.

https://doi.org/10.1145/1370143.1370145

46. C. Hollingsworth (2011). What Kanban can do. PM

Network, 25(3), 66–67.

https://www.pmi.org/learning/library/kanban-template-

software-task-management-4367

47. D.X. Houston (2014). Agility beyond software

development. ICSSP 2014: Proceedings of the 2014

International Conference on Software and System Process,

May 2014.

48. M. Howard, D. LeBlanc, J. Viega (2010). 24 Deadly Sins

of Software Security: Programming Flaws and How to Fix

Them (1st Edition). McGraw-Hill, 2010.

49. Intland Software (2019). Agile-Waterfall Hybrid: Smart

Approach or Terrible Solution? White Paper, 2019.

https://content.intland.com/blog/agile/agile-waterfall-

hybrid-smart-approach-or-terrible-solution

50. ISO/IEC 25010:2011 (2011). Systems and software

engineering -- Systems and software Quality Requirements

and Evaluation (SQuaRE) -- System and software quality

models.

51. I. Jacobson, M. Christerson; P. Jonsson; G. Overgaard

(1992). Object Oriented Software Engineering. Addison-

Wesley ACM Press. ISBN 0-201-54435-0.

52. I. Jacobson, G. Booch, C. Rumbaugh (1998). The Unified

Software Development Process, Addison Wesley. ISBN 0-

201-57169-2.

53. N. Jastroch, V. Kirova, C. Ku, T.J. Marlowe, M.

Mohtashami (2011), Adapting Business and Technical

Processes for Collaborative Software Development. 17th

International Conference on Concurrent Enterprising, June

2011.

54. X. Jun (2009). Agile Manufacturing Model of Small and

Medium-Sized Manufacturing Enterprises. 2009 Second

International Conference on Future Information

Technology and Management Engineering.

70 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 7 - YEAR 2020 ISSN: 1690-4524

https://www.thebalancesmb.com/what-is-agile-construction-management-845374
https://www.thebalancesmb.com/what-is-agile-construction-management-845374
https://www.ibm.com/garage/method/practices/learn/practice_hypothesis_driven_development/
https://www.ibm.com/garage/method/practices/learn/practice_hypothesis_driven_development/
https://www.projecttimes.com/articles/can-agile-pm-be-applied-outside-of-it-environments.html
https://www.projecttimes.com/articles/can-agile-pm-be-applied-outside-of-it-environments.html
https://www.projecttimes.com/articles/can-agile-pm-be-applied-outside-of-it-environments.html
https://www.projecttimes.com/articles/can-agile-pm-be-applied-outside-of-it-environments.html
https://dl.acm.org/doi/10.1145/3234152.3234177
https://dl.acm.org/doi/10.1145/3234152.3234177
https://dl.acm.org/doi/proceedings/10.1145/3234152
https://dl.acm.org/doi/proceedings/10.1145/3234152
https://dl.acm.org/doi/proceedings/10.1145/3234152
https://doi.org/10.1145/3234152.3234177
https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fhackerchick.com%2Fkanban-is-the-new-scrum%2F&data=04%7C01%7CThomas.Marlowe%40shu.edu%7C8d5fa9b4d19d4b5db97408d89d9233fb%7C51f07c2253b744dfb97ca13261d71075%7C1%7C0%7C637432599624324753%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0&sdata=cOO%2BONF%2FU%2FVbXyLl6M2sqKSqsu5uG%2BEM8Qp16pHzgFE%3D&reserved=0
https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fora.pm%2Fblog%2Fscrum-vs-kanban-vs-scrumban&data=04%7C01%7CThomas.Marlowe%40shu.edu%7C8d5fa9b4d19d4b5db97408d89d9233fb%7C51f07c2253b744dfb97ca13261d71075%7C1%7C0%7C637432599624334748%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0&sdata=SNyRJS13fvKYxYJ4jMeRnfs%2FcJBCE9vw9Md5zY%2F1yPE%3D&reserved=0
https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.agilebrainsconsulting.net%2F&data=04%7C01%7CThomas.Marlowe%40shu.edu%7Cb55d07ac3d254e21f8d808d89debf668%7C51f07c2253b744dfb97ca13261d71075%7C1%7C0%7C637432984065269768%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=NHx3vukHfTx0Bmfians0FGhw4X1ZW%2FedjexRwp%2Fnqhw%3D&reserved=0
https://www-users.cs.york.ac.uk/~rhawkins/papers/HawkinsKelly%20IET%2009.pdf
https://www-users.cs.york.ac.uk/~rhawkins/papers/HawkinsKelly%20IET%2009.pdf
https://www-users.cs.york.ac.uk/~rhawkins/papers/HawkinsKelly%20IET%2009.pdf
https://dl.acm.org/doi/proceedings/10.1145/1370143
https://dl.acm.org/doi/proceedings/10.1145/1370143
https://dl.acm.org/doi/proceedings/10.1145/1370143
https://doi.org/10.1145/1370143.1370145
https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.pmi.org%2Flearning%2Flibrary%2Fkanban-template-software-task-management-4367&data=04%7C01%7Cthomas.marlowe%40shu.edu%7C3eec18500bed4989245c08d89d2f6244%7C51f07c2253b744dfb97ca13261d71075%7C1%7C0%7C637432174124670289%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=N5FZmLm0sDTS8r3fgao4DekWd4C9AM899tBnAT5wmuQ%3D&reserved=0
https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.pmi.org%2Flearning%2Flibrary%2Fkanban-template-software-task-management-4367&data=04%7C01%7Cthomas.marlowe%40shu.edu%7C3eec18500bed4989245c08d89d2f6244%7C51f07c2253b744dfb97ca13261d71075%7C1%7C0%7C637432174124670289%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=N5FZmLm0sDTS8r3fgao4DekWd4C9AM899tBnAT5wmuQ%3D&reserved=0
https://content.intland.com/blog/agile/agile-waterfall-hybrid-smart-approach-or-terrible-solution
https://content.intland.com/blog/agile/agile-waterfall-hybrid-smart-approach-or-terrible-solution
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://archive.org/details/objectorientedso00jaco/page/77
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-54435-0
https://ieeexplore.ieee.org/xpl/conhome/5379694/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5379694/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5379694/proceeding

55. C. Kaner, J. Falk, H.Q. Nguyen (1999). Testing computer

software. John Wiley and Sons, Inc.

56. J. Kanjililal (2016). My two cents on aspect-oriented

programming. InfoWorld.

https://www.infoworld.com/article/3040557/my-two-cents-

on-aspect-oriented-programming.html

57. J. Kanjililal (nd). 4 agile best practices every enterprise

architect should follow. TechBeacon.

https://techbeacon.com/app-dev-testing/4-agile-best-

practices-every-enterprise-architect-should-follow?

58. J. Karlsson (2019). Principles of good large-scale Agile.

What works—and what doesn't—when it comes to Agile at

scale. https://www.javacodegeeks.com/2019/01/selecting-

software-architecture.html

59. S. Kaushal (n.d.). Lambda Expressions in Java 8. Geeks for

Geeks. https://www.geeksforgeeks.org/lambda-

expressions-java-8/

60. A. Kelly (2015). Does Agile Work outside Software? Agile

Connection, January 7, 2015.

https://www.agileconnection.com/article/does-agile-work-

outside-software.

61. J. Kerievsky (2005). Refactoring to Patterns, Addison-

Wesley, ISBN 0-321-21325-1.

62. M. Kuhrmann, P. Diebold, J. Münch, C. Prause, et al

(2018). Hybrid Software Development Approaches in

Practice: A European Perspective. IEEE Software, January

2018.

63. M. Kumar, A. Sharma, S. Garg (2009). A study of aspect

oriented testing techniques. 2009 IEEE Symposium on

Industrial Electronics & Applications, Kuala Lumpur,

2009, pp. 996-1001, doi: 10.1109/ISIEA.2009.5356308.

64. M. Kumar, M. Shukla, S. Agarwal (2013), A Hybrid

Approach of Requirement Engineering in Agile Software

Development. 2013 International Conference on Machine

Intelligence and Research Advancement, December 2013.

65. M. Laanti (2016). Piloting Lean-Agile Hardware

Development, XP '16 Workshops: Proceedings of the

Scientific Workshop Proceedings of XP2016. May 2016,

Article No.: 3, pp 1–6.

https://doi.org/10.1145/2962695.2962698

66. K. Lalithraj (2020). Static vs Dynamic Code Analysis: How

to Choose Between Them. OverOps, September 18, 2020.

https://www.overops.com/blog/static-vs-dynamic-code-

analysis-how-to-choose-between-them/

67. C. Larman (2005), Applying UML And Design Patterns,

3rd edition, Prentice Hall. 0-13-148906-2.

68. R. Lemos (n.d.). Why you need to get your team up to

speed on privacy-aware development. TechBeacon.

https://techbeacon.com/security/why-you-need-get-your-

team-speed-privacy-aware-development

69. The LeSS Company (2020). LeSS Framework.

https://less.works/less/framework/index.html

70. S. Lietz (2015). What is DevSecOps? DevSecOps Blog,

June 1, 2015.

https://www.devsecops.org/blog/2015/2/15/what-is-

devsecops

71. C. Lilienthal (2019). Sustainable software architecture:

Getting rid of technical debt. JaxEnter, 07 25 19.

https://jaxenter.com/sustainable-software-architecture-

technical-debt-160372.html

72. T.J. Marlowe, V. Kirova (2008). Addressing Change in

Collaborative Software Development through Agility and

Automated Traceability. 12th World Multiconference on

Systemics, Cybernetics and Informatics (WMSCI 2008),

209–215, Orlando, USA, June-July 2008.

73. T.J. Marlowe, V. Kirova (2009). High-level Component

Interfaces for Collaborative Development: A Proposal. 2nd

International Multi-Conference on Engineering and

Technological Innovation (IMETI 2009), July 2009.

74. T.J. Marlowe, N. Jastroch, S. Nousala, V. Kirova (2012).

Collaboration, Knowledge and Interoperability —

Implications for Software Engineering. Workshop on

Collaborative Enterprise (CENT) 2012, 16th World Multi-

Conference on Systemics, Cybernetics and Informatics

(WMSCI 2012), Orlando FL, July 2012.

75. T.J. Marlowe (2020). Keynote, “The Development and

Evolution of Agile”, IIIS Plenary Presentation

(Asynchronous), September 2020.

76. T.J. Marlowe, V. Kirova, G. Chang, “The State of Agile:

Changes in the World of Change”. WMSCI 2020, Orlando

FL, September 2020.

77. R.C. Martin (2009). Clean Code, Prentice Hall, 2009. ISBN

0-13-235088-2.

78. C. Matthies (2019). Agile process improvement in

retrospectives. ICSE '19: Proceedings of the 41st

International Conference on Software Engineering:

Companion Proceedings. May 2019, 150–152.

https://doi.org/10.1109/ICSE-Companion.2019.00063

79. R. McBean (2019). The art and craft of test-driven

development. Increment.com, issue 10, August 2019.

https://increment.com/testing/the-art-and-craft-of-tdd/

80. F. McCaffery, P. Donnelly, A. Dorling, F.G. Wilkie (2004)

A Software Process Development, Assessment and

Improvement Framework for the Medical Device Industry.

In: Fourth Int. SPICE Conf, 28-29 April 2004, Lisbon,

Portugal. https://eprints.dkit.ie/144/

81. R.M. McClure (2001). The NATO Software Engineering

Conferences.

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/Introduc

tion.html

82. B. Meyer (2014). Agile!: The Good, the Hype and the

Ugly, Springer. ISBN-13: 978-3319051543.

83. P. Milind, S. Gopinath, A. Kumar (n.d.). Using agile in

construction projects: It’s more than a methodology.

84. Modern Agile (2020). https://modernagile.org/

85. E. Moster (2013). Using Hybrid SCRUM to Meet Waterfall

Process Deliverables, Ph.D, Thesis, East Carolina

University, 2013.

86. A.S. Mutschler (2016). Using Agile Methods for Hardware.

Semiconductor Engineering, January 28th, 2016.

https://semiengineering.com/using-agile-methods-for-

hardware/

87. New Context (n.d.). The “What” “How” and “Why” of

DevSecOps: What is DevSecOps?.

https://newcontext.com/what-is-devsecops/

88. OptiProERP (2020). What is Agile Manufacturing and how

can it help you succeed?

https://www.optiproerp.com/in/blog/what-is-agile-

manufacturing-and-how-can-it-help-you-succeed/

89. B. O’Reilly. How to Implement Hypothesis-Driven

Development. https://barryoreilly.com/how-to-implement-

hypothesis-driven-development/

90. M. Poppendieck, M.A. Cussomano (2012). Lean Software

Development. IEEE Computer, September-October 2012,

26-32.

91. R.S. Pressman, B. Maxim (2015), Software Engineering: A

Practitioner's Approach, 8th edition. McGraw Hill, 2015,

ISBN 0-07-301933-X.

92. V. Rahimian, R. Ramsin (2008), Designing an agile

methodology for mobile software development: A hybrid

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 7 - YEAR 2020 71

https://na01.safelinks.protection.outlook.com/?url=http%3A%2F%2Flink.oreilly.com%2Fv0zJ0QX20rWSFXibM00n000&data=01%7C01%7Cthomas.marlowe%40shu.edu%7C1d76465cbf61467c769608d67a7c8a7e%7C51f07c2253b744dfb97ca13261d71075%7C1&sdata=0nzL89ewIxZhKmxxoiT1Od%2ByDQlfjdb485C4J6Trdno%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=http%3A%2F%2Flink.oreilly.com%2Fv0zJ0QX20rWSFXibM00n000&data=01%7C01%7Cthomas.marlowe%40shu.edu%7C1d76465cbf61467c769608d67a7c8a7e%7C51f07c2253b744dfb97ca13261d71075%7C1&sdata=0nzL89ewIxZhKmxxoiT1Od%2ByDQlfjdb485C4J6Trdno%3D&reserved=0
https://www.javacodegeeks.com/2019/01/selecting-software-architecture.html
https://www.javacodegeeks.com/2019/01/selecting-software-architecture.html
https://www.geeksforgeeks.org/lambda-expressions-java-8/
https://www.geeksforgeeks.org/lambda-expressions-java-8/
https://www.agileconnection.com/article/does-agile-work-outside-software
https://www.agileconnection.com/article/does-agile-work-outside-software
https://techbeacon.com/security/why-you-need-get-your-team-speed-privacy-aware-development
https://techbeacon.com/security/why-you-need-get-your-team-speed-privacy-aware-development
https://less.works/less/framework/index.html
https://www.devsecops.org/blog/2015/2/15/what-is-devsecops
https://www.devsecops.org/blog/2015/2/15/what-is-devsecops
https://dl.acm.org/doi/10.1109/ICSE-Companion.2019.00063
https://dl.acm.org/doi/10.1109/ICSE-Companion.2019.00063
https://dl.acm.org/doi/proceedings/10.5555/3339663
https://dl.acm.org/doi/proceedings/10.5555/3339663
https://dl.acm.org/doi/proceedings/10.5555/3339663
https://increment.com/testing/the-art-and-craft-of-tdd/
https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Feprints.dkit.ie%2F144%2F&data=04%7C01%7Cthomas.marlowe%40shu.edu%7C5aa8f7730a0848b7574f08d89d3fffe2%7C51f07c2253b744dfb97ca13261d71075%7C1%7C0%7C637432245487050191%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=XwHYX%2BBtyhbW4SvZGh95df8DRhPeTMtwgjdC%2F29FRHo%3D&reserved=0
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/Introduction.html
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/Introduction.html
https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmodernagile.org%2F&data=04%7C01%7CThomas.Marlowe%40shu.edu%7Caa6ea6d721cf47a5037d08d8a42d8a03%7C51f07c2253b744dfb97ca13261d71075%7C1%7C0%7C637439862791384798%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=X0pWmU46Q3H7uYD03%2Bgw%2F5p%2BN%2BVfx%2BgdiXKFnjYOuow%3D&reserved=0
https://semiengineering.com/using-agile-methods-for-hardware/
https://semiengineering.com/using-agile-methods-for-hardware/
https://www.optiproerp.com/in/blog/what-is-agile-manufacturing-and-how-can-it-help-you-succeed/
https://www.optiproerp.com/in/blog/what-is-agile-manufacturing-and-how-can-it-help-you-succeed/

method engineering approach. 2008 Second International

Conference on Research Challenges in Information

Science, June 2008.

93. D.K. Rigby, S.Berez, G Caimi, A. Nobel: Agile innovation,

Bain & Company Brief, April 19, 2016.

94. M. Rouse (2018). Integrated development environment

(IDE). Tech Target.

95. Isaac Sacolick (2020). 7 best practices for remote agile

teams. Infoworld, 04 13 20.

https://www.infoworld.com/article/3532286/7-best-

practices-for-remote-agile-teams.html

96. SAFe WhitePaper 5.0, Final Draft (2019).

https://www.scaledagile.com/resources/safe-whitepaper/

97. P. Satasiya (2019). Top Ten Automated Testing Tools.

DZone.com. https://dzone.com/articles/top-10-automated-

software-testing-tools

98. Scaled Agile Framework (2019). DevOps. Last update

December 27, 2019.

https://www.scaledagileframework.com/devops/

99. Scaled Agile Framework (n.d.). Team kanban.

https://www.scaledagileframework.com/team-kanban/

100. K. Schwaber (n.d.). SCRUM development process.

http://www.jeffsutherland.org/oopsla/schwapub.pdf

101. Scrum Alliance (2017). The Scrum GuideTM. November

2017. https://www.scrumalliance.org/learn-about-

scrum/the-scrum-guide

102. Scrum Professional (2018). To Scrum, to Kanban or to

Scrumban, that is the question. ProWareNess.

https://www.scrum.nl/blog/to-scrum-to-kanban-or-to-

scrumban-that-is-the-question/

103. SCRUMStudy (2020). What is Crystal? January 21, 2020.

http://blog.scrumstudy.com/what-is-crystal/

104. H. Shah (2020). Agile vs DevOps: What’s the difference?

JavaCodeGeeks, 11 10 20,

https://www.javacodegeeks.com/2020/11/agile-vs-devops-

whats-the-difference.html

105. M. Shahin, M. Ali Babar, L. Zhu (2017). Continuous

Integration, Delivery and Deployment: A Systematic

Review on Approaches, Tools, Challenges and Practices.

IEEE Access, vol. 5, pp. 3909-3943, 2017, doi:

10.1109/ACCESS.2017.2685629[44]

106. M. Shaw, D. Garlan (1996). Software Architecture:

Perspectives on Emerging Discipline, Prentice Hall. ISBN-

13: 978-0131829572.

107. R. Shaydulin, J. Sybrandt (2017). To Agile or Not to Agile:

A Comparison of Software Development Methodologies,

April 2017.

108. S. Sigel (2017). Pros and cons for agile hardware product

development. GrabCad, May 14, 2014.

https://blog.grabcad.com/blog/2014/05/14/pros-cons-agile-

hardware-product-development/ [and links therein]

109. Software Testing Help (2020). What is Beta Testing: A

complete guide. https://www.softwaretestinghelp.com/beta-

testing/

110. Stack Exchange (2017). What could be a valid definition of

DevOps to introduce it to a novice? March 2017.

https://devops.stackexchange.com/questions/788/what-

could-be-a-valid-definition-of-devops-to-introduce-it-to-a-

novice#806

111. G. Straçusser (2015). Agile project management concepts

applied to construction and other non-IT fields. PMI®

Global Congress 2015—North America, Orlando, FL.

Newtown Square, PA: Project Management Institute.

112. M. Sweezey, S. Vizuri (2014). Internationalization best

practices for agile teams. AgileConnection, January 7,

2014.

https://www.agileconnection.com/article/internationalizatio

n-best-practices-agile-teams

113. M. Tanveer (2016). Agile for Large-Scale Projects—A

Hybrid Approach. 2015 National Software Engineering

Conference (NSEC), December 2015.

114. R. Tarne (2011). Taking off the agile training wheels,

advance agile project management using Kanban. Paper

presented at PMI® Global Congress 2011—North

America, Dallas, TX. Newtown Square, PA: Project

Management Institute.

115. Ö. Uludağ, M. Kleehaus, N. Dreymann, C. Kabelin, F.

Matthes (2019). Investigating the adoption and application

of large-scale scrum at a German automobile

manufacturer. ICGSE '19: Proceedings of the 14th

International Conference on Global Software Engineering.

May 2019, 22–29. https://doi.org/10.1109/ICGSE.2019.00-

11

116. L. van Moergestel, E. Puik, D. Telgen, J.-J. Meyer (2012).

Production Scheduling in an Agile Agent-Based Production

Grid, WI-IAT ‘12: The 2012 IEEE/WIC/ACM

International Joint Conferences on Web Intelligence and

Intelligent Agent Technology - Vol. 02, 293-298,

December 2012. https://doi.org/10.1109/WI-IAT.2012.139

117. J. Viega, J.G. McGraw (2001). Building Secure Software:

How to Avoid Security Problems the Right Way. Addison-

Wesley Professional. p. 528. ISBN 978-0201721522.

118. VivifyScrum (2019). Agile Project Management in

Manufacturing – Coming the Full Circle. 04 19 2019

https://www.vivifyscrum.com/insights/agile-project-

management-in-manufacturing

119. E. Warren (2019)., Agile might be dead but agility isn’t.

Forbes, 07 16 19.

https://www.forbes.com/sites/forbestechcouncil/2019/07/16

/agile-might-be-dead-but-agility-isnt

120. D. Wells (1999). Spike solution.

http://www.extremeprogramming.org/rules/spike.html

121. LVK Withanagamage, RMVS Ratnayake, EJ Wattegama,

A Conceptual Framework to assess the Applicability of

Agile Manufacturing Techniques. 2018 International

Conference on Production and Operations Management

Society (POMS), 2018.

122. A. Yagüe, J. Garbajosa, J. Díaz, E. González (2016). An

exploratory study in communication in Agile Global

Software Development. Computer Standards & Interfaces,

48, 184-197, November 2016.

https://doi.org/10.1016/j.csi.2016.06.002

123. F. Zambonelli (2016). Towards a General Software

Engineering Methodology for the Internet of Things. arXiv,

21 January 2016. (See also references therein.)

72 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 7 - YEAR 2020 ISSN: 1690-4524

https://www.infoworld.com/article/3532286/7-best-practices-for-remote-agile-teams.html
https://www.infoworld.com/article/3532286/7-best-practices-for-remote-agile-teams.html
https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.scaledagile.com%2Fresources%2Fsafe-whitepaper%2F&data=04%7C01%7CThomas.Marlowe%40shu.edu%7Cb8d1657cc675484f567308d8957ea7c2%7C51f07c2253b744dfb97ca13261d71075%7C1%7C0%7C637423718506511125%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=kzwv9fNtBFvL7LvXPGFkPLaIo0fTU2i%2BDWx8YDizU1k%3D&reserved=0
https://dzone.com/articles/top-10-automated-software-testing-tools
https://dzone.com/articles/top-10-automated-software-testing-tools
https://nam05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.scaledagileframework.com%2Fteam-kanban%2F&data=04%7C01%7Cthomas.marlowe%40shu.edu%7C3eec18500bed4989245c08d89d2f6244%7C51f07c2253b744dfb97ca13261d71075%7C1%7C0%7C637432174124690280%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=kfM%2B%2Bs%2BR1g7xTUcuWA%2FMu8ox67TmjB%2Bl3eAiq7dPpZ4%3D&reserved=0
https://nam05.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.jeffsutherland.org%2Foopsla%2Fschwapub.pdf&data=04%7C01%7Cthomas.marlowe%40shu.edu%7Ce86f59854e2c4089116e08d89d2980fd%7C51f07c2253b744dfb97ca13261d71075%7C1%7C1%7C637432149199085716%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=aE%2FIH0K14lGNMlW0Dl51PCzo4mLgr0SKrM%2BGF3nk79A%3D&reserved=0
https://www.javacodegeeks.com/2020/11/agile-vs-devops-whats-the-difference.html
https://www.javacodegeeks.com/2020/11/agile-vs-devops-whats-the-difference.html
https://www.softwaretestinghelp.com/beta-testing/
https://www.softwaretestinghelp.com/beta-testing/
https://devops.stackexchange.com/questions/788/what-could-be-a-valid-definition-of-devops-to-introduce-it-to-a-novice
https://devops.stackexchange.com/questions/788/what-could-be-a-valid-definition-of-devops-to-introduce-it-to-a-novice
https://devops.stackexchange.com/questions/788/what-could-be-a-valid-definition-of-devops-to-introduce-it-to-a-novice#806
https://devops.stackexchange.com/questions/788/what-could-be-a-valid-definition-of-devops-to-introduce-it-to-a-novice#806
https://devops.stackexchange.com/questions/788/what-could-be-a-valid-definition-of-devops-to-introduce-it-to-a-novice#806
https://dl.acm.org/citation.cfm?id=3339034
https://dl.acm.org/citation.cfm?id=3339034
https://dl.acm.org/citation.cfm?id=3339034
https://doi.org/10.1109/ICGSE.2019.00-11
https://doi.org/10.1109/ICGSE.2019.00-11
https://dl.acm.org/doi/proceedings/10.5555/2457525
https://dl.acm.org/doi/proceedings/10.5555/2457525
https://dl.acm.org/doi/proceedings/10.5555/2457525
https://doi.org/10.1109/WI-IAT.2012.139
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0201721522
https://www.vivifyscrum.com/insights/agile-project-management-in-manufacturing
https://www.vivifyscrum.com/insights/agile-project-management-in-manufacturing
https://www.forbes.com/sites/forbestechcouncil/2019/07/16/agile-might-be-dead-but-agility-isnt
https://www.forbes.com/sites/forbestechcouncil/2019/07/16/agile-might-be-dead-but-agility-isnt
http://www.extremeprogramming.org/rules/spike.html

	SA349YP20.pdf

