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ABSTRACT 
 

According to the pathogenesis of hepatitis B, a mathematical 
model describing the relationship between hepatitis B 
virus(HBV) and the cellular immune response to the infection 
is built based on Nowak’s population dynamics model of 
immune responses to persistent viruses. The model has two 
possible equilibrium states: complete recovery (HBV will be 
eliminated from the body entirely), uninfected and infected 
hepatocytes coexisting state. The stability condition of each 
equilibrium points is discussed. Different set of parameters 
satisfied the different conditions is used in the simulation and 
the results show that the model can interpret the wide variety of 
clinical manifestations of infection: acute hepatitis, fulminant 
hepatitis, acute–turn-chronic hepatitis, chronic hepatitis without 
acute phase, recurring hepatitis, and so on. Both immunomics 
and infectomics may be involved in the underlying mechanisms. 
The model suggests that a rapid and vigorous CTL response is 
required for resolution of HBV infection. 
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1.   INTRODUCTION 
 
Hepatitis B virus (HBV) infection is an important health 
problem worldwide. The natural history and outcome of HBV 
infection is different. In more than 90% of immunocompetent 
adults who become infected, the immune response is quite 
vigorous, resulting in acute infections. Acute infections may be 
clinically silent or produce acute liver inflammation that leads 
to serious illness, and to fatal fulminant hepatitis in 
approximately 0.5% of subjects. However, the vast majority of 
acutely infected adults recover from the disease, controlling 
virus replication and developing long-lasting immunity. In 5% 
of HBV-infected immunocompetent adults, and most cases of 
vertical transmission of HBV, persistent infection and chronic 
necroinflammatory liver disease evolve which may eventually 
lead to liver cirrhosis and hepatocarcinoma. Approximately 4% 
of the world population is persistently infected by HBV.  In 
order to find an efficient way to prevent and treat the infection, 
it is of great importance to understand both immunomics  
infectomics (immunoinfectomics) of HBV infection [1, 2]. 
New techniques in molecular/cellular biology and 
immunoinfectomics have been crucial in deepening our 
understanding of immune processes. Most of these new 
techniques have allowed the isolation of the process or cell 

under study so that the results can be readily interpretable. At 
the present time, however, there is an emerging need to 
understand the system as it functions as a whole and the 
language of mathematics is the one best suited for this purpose. 
Mathematical models can serve several distinct purposes. They 
can be used to analyze experimental results and provide 
predictions and suggestions for follow-up experiments, or they 
can attempt to synthesize existing knowledge and provide a 
theoretical framework for the interpretation of existing 
paradigms [3].  
 
As cytotoxic T lymphocytes (CTLs) is though to play a critical 
role in antiviral defense by attacking virus-infected cells in 
most virus infections, Nowak presented a population dynamics 
model to explain the dynamics of host cytotoxic T cell response 
to infectious agents [4]. As the model is in good agreement 
with the outcome of HIV infection and can interpret the viral 
load changes after the initiation of antiviral therapy, it is widely 
used to evaluate the antiviral effectiveness of drug treatment 
for HIV. And the model is even used in the assessment of the 
efficiency of antiviral therapy for HBV and HCV [5]-[7]. But 
the model fails to explain the various outcomes of HBV 
infection. Payne and Nowak built a cellular model [8]. They 
assumed that the liver is comprised of two subsets of 
hepatocytes that respond contrastingly to infection by the virus 
and that are in different stages of maturation, the less 
differentiated cells being referred to as R cells (‘‘resistent’’ to 
viral replication) and the more differentiated as S cells 
(‘‘susceptible’’ to viral replication). The R cells have the 
capacity to divide, but the S cells do not undergo significant 
further division and the proportion of S cells in an uninfected 
liver therefore increases with increasing age. The model can be 
used to account for the wide variety of clinical manifestations 
of infection and can explain the observed age dependence of 
the main different outcomes of the disease. But the model has 
its shortcomings: there is only two stable steady states: (i) 
uninfected, with only S cells present; (ii) Chronic Persistent 
Hepatitis, saturated by infected R cells. As the R cell is thought 
to be the oval cells [9], saturated by R cells means all the cells 
in the liver are oval cells. But oval cells do not exist in normal 
liver tissue and only arise after a stressful stimulus such as a 
mechanical injury or exposure to a carcinogen [10]. So the 
second state does not exist in clinical.  
 
Aimed at the above shortcomings of Nowak’s model, a 
modified model is proposed. Qualitative analysis and 
simulation results show that the new model can account for the 
wide variety of clinical manifestations of HBV infection. 
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2.  MATHEMATICAL MODEL 
 
The model contains five variables, i.e., uninfected hepatocytes 
(X), infected hepatocytes (Y), total host hepatocytes (N=X+Y), 
free virus (V) and a CTL response (Z). The changes of 
population over time can be described by a system of 
differential equations. Fig.1. is a schematic representation of 
this model.  
 

 
Fig.1.  HBV infection model 

 
The corresponding mathematics equations are 
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where  is the natural growth rate of hepatocyte cells(both 
infected and uninfected hepatocytes divide  at the same rate 
[11]). It is a monotonically decreasing Hill function [12] and 

1 when (without loss of generality we take the 
cell and virus concentrations to be scaled such that in the 
uninfected system the total cell concentration is N=1) [13]. 
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Both uninfected and infected hepatocytes are assured to 
replicate at rate  and die at rate constant 

1d . Infection 
occurs with rate constant 

1b . The model also allows for a 
component of the death rate of infected cells, , due to 
immune-mediated killing and for noncytolytic clearance of 
virus from infected cells with rate . HBV are produced by 
infected cells at average rate  per cell and are removed at a 
rate . CTLs proliferation can be described by two terms 

and , where  represents antigen-independent 
proliferation and k  represents antigen-dependent 
proliferation. is small. When antigen stimulation is high, we 
assume . CTLs decay at rate constant . 
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3.  EQUILIBRIUM POINT ANALYSIS 
 
As the rate of change in the viral concentration will be much 
faster than that of the cell concentration and we find the V is in 
direct proportion to Y in the simulation results, so we let 

. This will make the qualitatively analysis much 
easier as the model is reduced. Now the equations can be 
rewritten as  
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The possible steady states are as follows:  
(1) (1，0，g4/d4), (2) ( ) and (3) ( ). *
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We investigate the linear stability by considering small 
perturbations to the system in the vicinity of the steady state
（ ）.Let  **,*, ZYX
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where .Substituting into Eq.(2) and retaining only 
linear terms, the linearized system can be obtained: 
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1) The uninfected state (1，0，g4/d4) 

This state satisfies 0/// === dtdZdtdYdtdX , Substituting 
into Eq.(3) gives the 

linearized equations: 
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The characteristic equation of (4) is as follows 
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03,2,1 <λ  and . There will always be stability with 

respect to perturbations in X, Y, and Z. If the parameters 
satisfied this situation, HBV will be eliminated from the body 
entirely soon after the invasion. The larger 

4421
 is, 

the less likely that the HBV invasion would be persistent. As 
21
 is the quality index of HBV-specific T cells, the quality 

of HBV-specific T is the key factor in determining the outcome 
of HBV infection. 

44
 is the quantity of the HBV-

specific T cells before infection, so vaccination is one of the 
most important measures in preventing HBV infection. 
Vaccination can induce immunologic memory, resulting in the 
increase of memory HBV-specific T cells which are long-lived. 
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For the case of , there will always be 
instability with respect to perturbations in X ,Y ,and Z. That is 
to say, if the body is invaded by the HBV and the immune 
system cannot wipe out the virus, serious problems may appear.  
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2) All hepatocytes are infected cells  ( ) *
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In this case, .  
( ) cannot be an equilibrium point. 
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3) Uninfected and infected hepatocytes coexisting state 
( *

2
) *

2
*
2 Z,Y,X

From , we can get 0/// === dtdZdtdYdtdX

)/(]/)([

/)(

])(/[X

2113
*
231

*
2

*
2

44
*
24

*
2

*
23131

*
23

*
2

*
231

*
2

kkddXkbNFZ

kgZdY

YkbddNFdYZdk

+−+=

−=

−−=
.         (6) 

Substituting (6) into (3) gives the linearized equations 

zdYkyZkdtdz

zYkkyNFY

xNFdYkbdtdy

zYkydXkbZk

NFXxZYkNFXdtdx

)(/

)()(

)](Y/[/

)/

)((]*)([/

4
*

24
*
24

*
221

*
2

*
2

*
2

*
23

*
231

*
213

*
231

*
21

*
2

*
2

*
2

*
21

*
2

*
2

−+=

+−′+

′+=

+−

+′+−′=

  .          (7) 

The characteristic equation is as follows 
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When ， there are no roots with 
positive real part [14] .It will be stability with respect to 
perturbations in . In this case, the HBV can invade 
the body and cause disease. But some times the patient will die 
before reaching this equilibrium state because of the severe 
liver dysfunction. 
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4.  SIMULATION 
 
By combining the various conditions derived in the previous 
section, we can deduce an appropriate parameter set for the 
simulation of the model. 
 
The parameters (1 time unit = 1 day) are set up as follows 

f1=0.04; f2=1; d1=0.02(average life span of hepatocyte =50 
days) and d3=0.7(half-life of free virus =1 day). 

 

1) Acute hepatitis 

The parameters during the simulation of acute hepatitis are set 
up as follows 

b1=1.0; k1=1000; k2=500; k3=200; 

g4=0.00003; k4=1; d4=0.1; V0=1e-3. 

 

HBV can cause acute hepatitis, resulting in short-term 
inflammation of the liver before the immune system is able to 
remove the virus from the body. In acutely infected patients 
who successfully control the virus, the response of CTL to 
HBV is so rapid and vigorous that the virus is eliminated from 
the blood and liver entirely. If the maximum damage and the 
maximum concentration of free virus are low, the disease may 
come and go without any symptoms, otherwise severe clinical 
symptoms will be observed. Simulation results of acute 
hepatitis are shown in Fig. 2. 

 
Fig. 2. Acute hepatitis 

 

2) Fulminant hepatitis 
The parameters during the simulation of fulminant hepatitis are 
set up as follows 

b1=10; k1=50; k2=1500; k3=1500; 

g4=0.00001; k4=0.3; d4=0.1; V0=2e-2. 
In this case, the virus rapidly replicates and infects almost 
every hepatocyte cell in the liver. Most infected hepatocytes are 
destructed due to the vigorous CTL response(k1+k2 is large). 
Patient with fulminant hepatitis cannot stay at the equilibrium 
state analyzed in the mathematics model but will die due to the 
severe liver dysfunction. The mortality of fulminant hepatitis is 
60%~90%. Simulation results of fulminant hepatitis are shown 
in Fig. 3.  

 
Fig. 3.  Fulminant hepatitis 
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3) Acute–turn-chronic hepatitis 
The parameters during the simulation of acute–turn-chronic 
hepatitis are set up as follows 

b1=0.6; k1=50; k2=600; k3=1200; 

g4=0.00001; k4=0.2; d4=0.1; V0=1e-2. 
 

HBV can become a chronic infection when the immune system 
cannot fight off the hepatitis B virus within six months after 
infection. It will establish a chronic, lifelong infection in the 
liver, and will have an enormously increased risk of developing 
liver cancer. It is well known that the CTL response is much 
less vigorous in chronically infected patients than it is during 
acute infection. Simulation results of acute–turn-chronic 
hepatitis are shown in Fig. 4. 

 
Fig. 4.  Acute–turn-chronic hepatitis 

 

4) Chronic hepatitis without acute phase 
The parameters during the simulation of chronic hepatitis 
without acute phase are set up as follows 

b1=0.5; k1=100; k2=800; k3=300; 

g4=0.00001; k4=0.1; d4=0.1; V0=1e-2. 

 

 
Fig. 5.  Chronic hepatitis 

 

Many chronically infected people are asymptomatic and show 
little or no clinical signs. The HBV-specific immune response 
is too weak to eliminate HBV from all infected hepatocytes, 
but it is strong enough to continuously destroy HBV-infected 
hepatocytes, maybe resulting in progressive tissue damage and 
even cancer. Simulation results of chronic hepatitis without 
acute phase are shown in Fig.5. 

 

 

5) Recurring hepatitis 
The parameters during the simulation of Recurring hepatitis are 
set up as follows 

b1=1.0; k1=10; k2=800; k3=800; 

g4=0.00001; k4=2; d4=0.1; V0=1e-2. 

 
The patient may be diagnosed as complete recovery when the 
viral concentration is at its lowest. But the virus never 
completely disappears and an apparent reinfection will soon 
appear. This recurrence will last for years. The simulation 
results of recurring hepatitis are shown in Fig. 6. 

 
Fig. 6.  Recurring hepatitis 

 

6) Asymptomatic chronic hepatitis 
The parameters during the simulation of asymptomatic chronic 
hepatitis are set up as follows 

b1=0.01; k1=0; k2=0.001; k3=300; 

g4=0.00002; k4=0; d4=0.1; V0=2e-2; X0=0.98. 

 
Vertical transmission of HBV results in milder hepatitis, with 
no symptoms. The virus establishes itself in this 
immunologically immature population and is tolerated so that 
there will be no adequate immune response. Neonatal tolerance 
is probably responsible for both the lack of an antiviral immune 
response and for viral persistence after mother–infant 
transmission. This is the most common antecedent of persistent 
HBV infection worldwide. The simulation results of 
asymptomatic chronic hepatitis are shown in Fig. 7. 
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Fig. 7.  Asymptomatic hepatitis 

 
 
 

5.  CONCLUSIONS 
 
According to this model, if the virus has a weak infectious 
capability (b1 is small) and replicates slowly (k3 is small), the 
CTL response to HBV is vigorous  (k1+k2 is large and 

) enough to eliminate the virus from 
the liver entirely and the patient will completely recover after 
the infection. Otherwise serious problem will be caused. 

4421331 /)(/ dgkkdkb +<

 
If the virus with strong infectious capability (b1 is large) 
replicates rapidly (k3 is large), most hepatocyte cells in the 
liver will get infected, resulting in massive liver necrosis due to 
the strong CTL response(k2 is large). The outcome will be 
fulminant hepatitis. 
 
If the immune system defends against the HBV with a weak 
ability (k1+k2 is small) and weak CTL level (k4 is small), the 
infected cells cannot be cleared out entirely. The outcome will 
be chronic hepatitis. 
 
Though the dynamic behaviors of HBV infection are very 
complex, this simple model may provide a possible 
interpretation for the different outcomes of HBV infection. 
This model can also be applied to fit clinical and 
immunoinfectomics data for evaluating the interplay between 
the immune system and virus, thus providing holistic 
information about the potency of antiviral therapies and 
guiding development of optimal drug dosages and regimens. 
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