
 

 

An Interdisciplinary Machine Learning Approach for Wind Speed 

Forecasting1 
 

Pedro Junior Zucatelli1, Erick Giovani Sperandio Nascimento*2, Alejandro 

Mauricio Gutiérrez Arce3 and Davidson Martins Moreira4 
 

1Technological Center, Federal University of Espírito Santo – UFES 

Vitória, Espírito Santo, Brazil. 
2,4Manufacturing and Technology Integrated Campus – SENAI CIMATEC 

Salvador, Bahia, Brazil. 
3Universidad de la República – UdelaR – FING – IMFIA 

Montevideo, Uruguay. 
1pedrojrzucatelli@gmail.com, 2ericksperandio@gmail.com, 

3aguti@fing.edu.uy, 4davidson.moreira@gmail.com 

 

* Corresponding Author 

 

Abstract 

 
Multidisciplinary researchers have collaborated with industry to develop advanced 

high-fidelity simulation and optimization tools for wind power plants and turbine 

interactions with the atmosphere. These tools are capable of modeling the processes 

needed to predict plant interactions and provide state-of-the-art simulation and 

analysis capabilities that allow industry stakeholders to perform a wide variety of 

forecasting and optimization to lower the energy costs and mechanical impacts. Insights 

from machine learning and computational intelligence have the potential to transform 

nearly every aspect of the world as we know it. Today, these insights are being applied 

to accelerate the pace of discovery in a wide variety of areas including materials 

science, wind and solar energy, health care, national security, emergency response, and 

transportation. In order to provide effective wind speed forecasting, an 

interdisciplinary approach based on artificial intelligence (AI) by supervised machine 

learning with human judgment is presented in this work. An approach is proposed for 

a representative site in the Colonia Eulacio, Soriano Department, Uruguay. The 

statistical results are evaluated, and a quantitative interpretation given to choose the 

machine learning configuration that best forecasts the actual data. These machine 

learning methods have lower computational costs than other techniques such as 

numerical models for weather or climate prediction. The proposed method is a scientific 

contribution to reliable large-scale wind energy prediction and integration into existing 

 
1 The paper "An Interdisciplinary Machine Learning Approach for Wind Speed Forecasting" was edited 

by Elsevier Language Editing Services.  

We would like to express our deeply felt gratefulness to Professor Lilian Guarieiro for her comprehensive 

and detailed peer-editing of this document, as well as for her gentle alerts with regards to important 

issues. 
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grid systems in Soriano, Uruguay, and is a powerful tool that can help the UTE manage 

the national energy supply. 

 

Keywords: Atmospheric Science; Interdisciplinary Communication; Machine 

Learning; System Sciences and Engineering; Wind Speed Forecasting. 

 

 

1.  Introduction 

 

The integrity of natural ecosystems is already at risk from climate change caused by 

the intense emissions of greenhouse gases (or GHG emissions) such as carbon 

dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur 

hexafluoride into the atmosphere. Air pollution is currently a global issue that has 

received considerable attention. Alternative renewable resources such as solar and 

wind power must be developed to reduce global greenhouse gas emissions and, 

consequently, air pollution (Cheng et al., 2017). Nowadays, the adaptation of 

renewable energy (the most common examples include solar, wind, biomass, 

geothermal, hydropower, hydrogen, geothermal, and ocean energy) has become a 

national energy policy for many countries. 

 

Wind energy has developed rapidly in the past ten years (Jiang et al., 2016; Lia 

et al., 2018). This burgeoning type of renewable energy has showed exponential 

growth between 2010 and 2020. It was reported in Huang et al. (2015) that wind 

energy has the largest market share among renewable energy sources and is 

expected to maintain its rapid growth in the coming decade. The country of 

Uruguay, which is in South America, the fourth largest continent in the world, 

surprisingly obtains 94% of its electricity from renewable sources (Watts, 2015) 

mainly in the form of solar and wind power. Among the countries of the world, 

Uruguay ranks 3rd in the generation of wind energy (REN21, 2020). Wind speed 

prediction is fundamental in the monitoring, planning, and control of intelligent 

wind power systems. However, owing to the intermittent and stochastic nature 

of wind, it is difficult to make satisfactory forecasts (Liu et al., 2018).  

 

Wind energy varies over time. The variations occur mainly due to the influence 

of meteorological fluctuations over various time scales of within a minute, within 

an hour, from hour to hour, monthly and seasonally, and across years. 

Understanding these variations and their predictability is of key importance for 

the integration and optimal utilization of wind in the power system. Accurate 
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short-term wind speed forecasting (1 h to 12 h ahead) plays a substantial role in 

addressing this challenge. The correct prediction of wind speed can reduce the 

risk of wind power breaking in hybrid energy systems. 

 

Computational tools have been used to evaluate the wind behavior and thus 

obtain valuable information for the electro-energy sector in several parts of the 

world. Computational models can be useful for the identification of locations 

with high wind potential and, when used operationally in a daily and integrated 

manner, provide short, medium, and long-term wind energy generation forecasts 

(Peng et al., 2013). The use of wind energy generation for powering industries 

and society in general is very challenging for current power system operations. 

One reason for this is the fact that wind power is an intermittent energy source 

with a high degree of randomness and instability (Zhang et al., 2017).  

 

Artificial intelligence (AI), machine learning, and deep learning are among the 

most important soft computing methods that are widely used in a large range of 

applications spanning across various scientific fields. Short-term wind speed 

prediction for Colonia Eulacio, Soriano Department, Uruguay, has been 

performed by applying an artificial neural network (ANN) technique to 

representative hourly time series data for the site (Zucatelli et al., 2019a). The 

authors adopted an AI model using an multilayer perceptron (MLP) ANN with 

the Levenberg–Marquardt backpropagation learning algorithm. An MLP is a 

class of feed-forward ANN. The ANN in that work was first trained to provide 

the forecast for the next 1 hour ahead and using the forecast, the trained network 

was then applied recursively to infer the wind speed forecast for the next 12 h. 

The results of the short-term wind speed prediction showed good accuracy at all 

the anemometer heights tested, suggesting that this method is a powerful tool that 

can help the Administración Nacional de Usinas y Trasmisiones Eléctricas 

(UTE) manage the generation, transmission, distribution, and commercialization 

of electrical energy in Uruguay. 

 

Zucatelli et al. (2019b) reported short-term wind speed forecasting for the next 6 

h ahead (nowcasting) through the application of computational intelligence. The 

forecast was generated by an recurrent neural network (RNN) using anemometer 

data collected by anemometric towers at heights of 100.0 m in Brazil (tropical 

region) and 101.80 m in Uruguay (subtropical region). Both Brazil and Uruguay 

are Latin American countries. The results of the study were compared with wind 
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speed prediction results from the literature. The prediction results from the 

method proposed in the study achieved superior evaluation metrics (error, and 

regression). 

 

As an example of nowcasting, Zucatelli et al. (2019c) presented an application 

of the ANN technique to representative hourly time series data for short-term 

wind speed prediction at a site in the tropical region of Mucuri city, Bahia state, 

Brazil. To generate the training, validation, and test sets for this technique 

(supervised machine learning), one month of data was collected in a tower with 

anemometers installed at the heights of 100 m, 120 m, and 150 m. Different ANN 

configurations were applied with aim of finding the most efficient MLP ANN 

configuration with the Levenberg–Marquardt backpropagation training 

algorithm to forecast the wind speed for the next one hour ahead. The 

configuration was then applied to forecast the wind speed for the next three and 

six hours ahead. The coefficient of determination and the Pearson coefficient for 

the wind speed prediction for one hour ahead were 0.890 and 0.943, respectively. 

The statistical results show that the application of the ANN technique to predict 

the wind speed at the higher heights at the Bahia site has good accuracy and 

demonstrate its applicability as a powerful tool to help National Electrical System 

Operator (ONS) improve the usage and integration of wind energy into the 

national electrical grid. 

 

Zucatelli et al. (2019d) studied the use of a supervised machine learning 

algorithm that applied the MLP, RNN, and wavelet decomposition techniques to 

representative time series data of the site to generate short-term wind speed 

predictions in the tropical region of Mucuri city, Bahia state, Brazil. To train the 

ANN and validate the technique (supervised machine learning), data for one 

month were collected by an anemometric tower at a height of 100 m. Different 

wavelet families and ANN configurations were applied for this site and height. 

Based on the results of the study cases, it can be concluded that the proposed 

method (RNN + discrete Meyer wavelet, or dmey, level 3) provided the best 

results for the short-term forecasting horizon. 

 

In this context, the objective of this study is to identify the most efficient ANN 

configuration applying fully-connected RNN, gated recurrent unit (GRU), and 

long short-term memory (LSTM) with the Adam optimizer training algorithm for 

wind speed prediction 1 h ahead, and perform a comparison with MLP researched 
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and developed in Zucatelli et al. (2019a). The Adam optimization algorithm is 

an extension to stochastic gradient descent (SGD) that has recently seen broader 

adoption in computer vision and natural language processing deep learning 

applications (Kingma et al., 2014). The algorithm has also been applied for 1 h 

to 12 h forecasts using anemometer data collected from a tower located in 

Colonia Eulacio, Soriano Department, Uruguay, which is used as a reference in 

this current study. Anemometers were installed at the heights of 10.0 m, 25.70 

m, 81.80 m, 101.80 m between August 08, 2014, and August 07, 2015. There are 

no published reports in the literature for short-term 1 h to 12 h forecasts of the 

wind speed at four different anemometric heights in subtropical regions (south 

temperate zone), which include Uruguay, using and comparing the results of 

MLP (Zucatelli et al., 2019a), RNN, GRU, and LSTM. Thus, this study is a novel 

investigation relevant to the operation of wind energy plants in Uruguay. The 

main contributions of the study are as follows:  

 

i) One innovative aspect of this work is that it uses an approach to train the model 

for next-hour forecasting and then recursively infers the forecast for the 

following hours by applying artificial intelligence methods targeting short-term 

wind speed forecasting for the specified heights using RNN, LSTM, and GRU.  

 

ii) The proposed computational models based on AI by supervised machine 

learning elucidate the wind speed behavior and allow accurate wind speed 

prediction at different anemometric heights, e.g. 10.0 m, 25.70 m, 81.80 m, and 

101.80 m. The model can be used to identify optimal locations for wind turbines 

and to predict irregular wind energy for different anemometric heights at 

different sites. Short-term wind energy prediction can be improved using this 

model to enhance the wind power quality 1 h to 12 h ahead.  

 

iii) No previous research had applied the RNN, LSTM, and GRU ANNs and 

performed a comparison against a classical neural network (e.g. MLP) for short-

term wind speed prediction at the studied heights in Uruguay, which is a humid 

subtropical climate region. Thus, the results constitute a significant contribution 

to the scientific community.  

 

iv) The short-term wind speed prediction model is an important contribution to 

reliable large-scale wind energy forecasting and integration in Uruguay, given 

the increased use of this energy source in this country. 
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The remainder of this paper is organized as follows: the methodology is 

presented in section 2. Section 3 presents the numerical results and discussions, 

and the conclusion is given in section 4.  

 

 

2. Methodology 

 

Artificial intelligence models (ANN models) by supervised machine learning 

using MLP with Levenberg–Marquardt Backpropagation, and fully-connected 

RNN, GRU, and LSTM with the Adam optimizer (Kingma et al., 2014) were 

adopted as the computational methods. A training algorithm was applied for 

short-term wind speed prediction 1 h to 12 h ahead at Colonia Eulacio, Soriano 

Department, Uruguay at the anemometer’s heights of 10.0 m, 25.70 m, 81.80 m, 

and 101.80 m. The mean wind diurnal cycle in different seasons for this location 

was described in Lucas et al. (2016), which employed the same data for analysis 

as that used in the present study. ANN models are implemented through layers 

of interconnected nodes called neurons. The number of layers may vary 

depending on the characteristics of the problem. At least three layers are 

required: an input layer, a hidden layer, and an output layer (Russel & Norvig, 

2010). A concise definition of the AI field, by Chollet (2018), would be as 

follows: "the effort to automate intellectual tasks normally performed by 

humans". Chollet (2018) explain that “a machine-learning system is trained 

rather than explicitly programmed. It’s presented with many examples relevant 

to a task, and it finds statistical structure in these examples that eventually allows 

the system to come up with rules for automating the task”. He defines that "deep 

learning is a specific subfield of machine learning: a new take on learning 

representations from data that puts an emphasis on learning successive layers of 

increasingly meaningful representations". For Chollet (2018), "the deep in deep 

learning isn’t a reference to any kind of deeper understanding achieved by the 

approach; rather, it stands for this idea of successive layers of representations". 

Other definitions found in the literature, no less important, are highlighted in 

Figure 1. It shows an illustration of the relationship between computational or 

artificial intelligence, machine learning, and deep learning. Machine learning 

algorithms can be classified into different types as shown in Figure 2. 
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Figure 1: Relationship between computational or artificial intelligence, machine 

learning, and deep learning. 

 

Figure 2: Types of Machine Learning. 
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Validation (the checking or proving of the validity or accuracy of something) 

employs a set of anemometer data to calculate the error during training and for 

monitoring the fit level of the ANN to the training data.  

 

Generalization is the ability of the network to respond correctly to conditions 

never experienced before, i.e., the test dataset. As described in Haykin (1999), 

there are different possibilities for structuring an ANN based on the choices made 

for  

 

i. the number of hidden layers, 

 

ii. the type of training, 

 

iii. the architecture configurations, 

 

iv. the type of neuron and transfer (activation) functions, and 

 

v. the number of input/output parameters.  

 

To develop an ANN model, a set of input and output parameters are necessary. 

These sets are subdivided for use in the two different steps of network training 

and estimate validation. The correct selection of the predictors is crucial for the 

satisfactory performance of the model (Mori & Umezawa, 2009).  

 

This work uses an approach to train the model for next-hour forecasting and then 

recursively infers the forecast for the following hours by applying artificial 

intelligence methods targeting short-term wind speed forecasting for the 

specified heights using AI. Figure 3 shows the supervised machine learning 

workflow.  
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Figure 3: Supervised machine learning workflow. 

The improvement of wind power technology has allowed the installation of 

turbines at high altitudes (100.0 m or higher), which requires knowledge of the 

wind potential at these heights. To validate the estimates and increase the number 

of wind farms installed in Uruguay, 100.80 m high anemometric towers were 

installed at locations with promising winds in Colonia Eulacio (Soriano is a 

department of Uruguay), which is the region considered in this study (Figure 4). 

According to Datum WGS84, the tower is located at 33°16' S, 57°31' W 

(Zucatelli et al., 2019a). 
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Figure 4: Colonia Eulacio Tower, Soriano department, Uruguay.  

The measuring station used for this study is located in the southwestern region 

of Uruguay and consists of a 100.80 m high and 0.45 m wide triangular tower. 

The altitude of the installation location is approximately 100.0 m, and the 

location is surrounded by fields with plains. Thus, the location is characterized 

as a non-complex terrain. The station is owned by the Administración Nacional 

de Usinas y Transmissiones Eléctricas, or UTE. The UTE is a public energy 

sector company that works to make electric energy affordable in the country 

through the development of electricity generation, transmission, distribution, and 

commercialization well as the provision of advisory services and technical 

assistance in the areas of its specialty and annexes.  

 

The computational intelligence procedure was coded and executed in Matlab 

together with Python by Google Colab, Google’s free cloud service for artificial 

intelligence (AI) developers, and Keras, which follows best practices for 

reducing cognitive loads. Keras offers consistent and simple APIs, minimizes the 

number of user actions required for common use cases, and provides clear and 
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actionable error messages. The MLP, RNN, GRU, and LSTM neural network 

configurations analyzed are listed in Table 1. In this study, the fully connected 

network structure was applied for RNN, GRU, and LSTM. The fully connected 

layers were defined using the Dense class.  

Table 1. ANN configurations (config.) analyzed. 

ANN 

config. 

Layers 

Input node 
1st hidden 

layer 

2nd hidden 

layer 
Output node 

Config. 1 7 neurons 9 neurons - 1 neuron 

Config. 2 7 neurons 6 neurons - 1 neuron 

Config. 3 7 neurons 3 neurons - 1 neuron 

Config. 4 7 neurons 1 neuron - 1 neuron 

Config. 5 7 neurons 9 neurons 6 neurons 1 neuron 

Config. 6 7 neurons 6 neurons 3 neurons 1 neuron 

Config. 7 7 neurons 1 neuron 1 neuron 1 neuron 

 

Each training and forecast simulation took, on average, 3 seconds for MLP, 8 

minutes for RNN, 16 minutes for GRU, and 18 minutes for LSTM on a personal 

computer with 8 GB RAM.  

 

The inputs for each ANN are: 

 

i. hour,  

ii. day,  

iii. month,  

iv. year,  

v. average hourly values of the wind speed, 

vi. average hourly values of the wind direction, and 

vii. average hourly values of the temperature.  

 

The insertion of these meteorological parameters as input data contributes to the 

efficient training and validation of each ANN. Some descriptive statistics for the 

wind speed at different heights are shown in Table 2. 
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Table 2. Wind speed: descriptive statistics. 

Height [m] Hourly average speed [m/s] Standard deviation [m/s] 

101.80 7.21 3.00 

81.80 6.81 2.74 

25.70 4.98 2.21 

10.0 4.01 2.08 

 

The ANN output is the predicted wind speed for the next hour. In view of the 

total hours registered in the anemometer (1 year of recorded data = 8,760 hours), 

the data were separated into training, validation, and test datasets at a ratio of 

35:35:30 for all the ANNs. Each of the aforementioned ANN configurations was 

trained, validated, and tested to determine which was the most efficient for short-

term (1 h to 12 h) wind speed prediction.  

 

The activation functions, which define the outputs of the neurons in terms of their 

activity levels, that were inserted in this simulation are the:  

 

i. Sigmoidal function, in the form of the hyperbolic tangent function (which 

is differentiable, nonlinear, continuous, and increasing), for the hidden 

layers in all configurations. 

ii. Linear function for the output layer in MLP.  

iii. Softplus activation function for the dense output layer in RNN, GRU, and 

LSTM. The Softplus is smooth and differentiable. Experiments show that 

deep neural networks with Softplus units achieve significant performance 

improvement.  

 

To perform the forecasting, the ANN architecture that can achieve the best 

performance in the one-hour forecasting of the wind speed at each height (10.0 

m, 25.70 m, 81.80 m, 101.80 m) is first identified. This forecasted wind speed 

value is then assigned as the input for the 2nd hour of prediction, while the other 

input parameters (e.g. wind direction and air temperature) used at the start of the 

prediction are kept unchanged. The predicted wind speed for the 2nd hour is 

calculated. This procedure, which is shown in Figure 5, is repeated until the nth 

hour of forecasting is reached. 
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Figure 5: Workflow of the supervised machine learning AI wind speed 

forecasting procedure for 1 h to 12 h ahead of the start time. 

As the forecasting horizon increases, the quality of the forecasted wind speed is 

expected to decrease. This is evaluated and discussed in section 3. 

 

 

3. Numerical Results and Discussions 

 

In this work, the statistical indicators employed to analyze the results are the 

mean absolute error (MAE), mean squared error (MSE), root-mean-square error 

(RMSE), mean absolute percentage error (MAPE), coefficient of determination 

(R2 or R-squared), factor of two (Fac2), and Pearson’s correlation coefficient (r 

or Pearson’s r) as defined in Equations 1 to 8 respectively. An explanation of 

these statistical indicators is provided in [10, 11]. 

 

𝑒𝑡 = 𝑜𝑡 − 𝑓𝑡                                            (1) 
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𝑅2 =
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𝑡=1

∑ (𝑜𝑡−�̅�)2𝑛
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                              (6) 

 

𝑟 =
∑ (𝑜𝑡−�̅�𝑛

𝑡=1 )(𝑓𝑡−�̅�)

√∑ (𝑜𝑡−�̅�)2𝑛
𝑡=1 ∑ (𝑓𝑡−�̅�)2𝑛

𝑡=1

                                         (7) 

 

Fac2 = fraction of data [%] for 0.50 ≤ (
𝑓𝑡

𝑜𝑡
) ≤ 2.0                  (8) 

 

where t is the time, n the number of samples, et the error, ot the observed value, 

𝑓t the forecasted value, o̅ the mean of all observed values, and 𝑓 ̅the mean of all 

forecasted values. 

 

When connected and trained in multiple layers, an ANN model can represent any 

nonlinear function (McGovern et al., 2017). One advantage of an ANN model is 

that it can learn the relationship between complex nonlinear inputs and outputs 

(Quan et at., 2013). The best ANN configurations in this work are presented in 

Table 3. The aforementioned ANN architectures that were identified as the most 

efficient for the 1-hour forecast for each height were applied in the computational 

simulation to predict the wind speed for 2 h to 12 h ahead in Colonia Eulacio at 

all the heights tested. The best MLP architecture was described in Zucatelli et al. 

(2019a). 
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Table 3. The best ANN configurations. 

ANN / heights 
101.80 m 81.80 m 25.70 m 10.0 m 

Best ANN configurations 

MLP 7 4 7 4 

RNN 1 3 7 5 

GRU 7 6 6 5 

LSTM 6 5 1 1 

 

The statistical results for the 1 h to 12 h wind speed prediction at a height of 

101.80 m are presented in Table 4. The lowest values of the MAE, MSE, RMSE, 

and MAPE, as well as the highest Pearson’s correlation coefficient and R2 

values, were recorded for the 1-hour forecast for all the analyzed heights (10.0 

m, 25.70 m, 81.80 m, and 101.80 m). The mean R2 and Pearson’s r for the 1-

hour wind speed forecasting are 0.843 and 0.918, respectively. The lowest 

MAPE value is 15.84% for the height of 101.80 m and prediction horizon of 1 

hour. 

 

The results showed in Table 4 indicate that as the wind speed prediction load 

increases, the quality of the ANN forecasting output data decreases. Thus, a 

longer prediction time yields a larger error. As explained in the previous section, 

these results are expected as the adopted procedure uses the input data from the 

start of the prediction in addition to the wind speed computed for each forecasted 

hour to predict the wind speed for the nth hour, leading to accumulated errors. 

This result is consistent with the literature, e.g. Zucatelli et al. (2019a); Zucatelli 

et al. (2019b); Kusiak et al. (2009); Blonbou (2011); Carpinone et al. (2015); 

Filik and Filik (2017). Figure 6 presents a graphical comparison of the RMSE 

[m/s] and Pearson coefficients for different ANN models at 101.80 m. The graph 

shows that as the prediction horizon [h] increases, the RMSE increases, 

indicating that the error between the actual and predicted values increases. 
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Table 4. Performance indices of forecasting results obtained by different 

models on the case study for the height of 101.80 m. 

MLP 

Prediction Horizon [h] 1 3 6 9 12 

MAE [m/s] 0.89 1.67 2.24 2.59 2.87 

MSE [m2/s2] 1.40 4.68 7.95 10.3 12.38 

RMSE [m/s] 1.18 2.16 2.82 3.22 3.51 

Pearson 0.92 0.73 0.54 0.43 0.34 

R2 0.84 0.53 0.30 0.18 0.11 

MAPE [%] 15.84 30.13 39.19 43.65 47.10 

RNN 

Prediction Horizon [h] 1 3 6 9 12 

MAE [m/s] 0.93 2.64 7.29 7.78 7.94 

MSE [m2/s2] 1.53 9.77 60.99 68.97 71.43 

RMSE [m/s] 1.23 3.12 7.81 8.30 8.45 

Pearson 0.91 0.70 0.40 0.25 0.17 

R2 0.84 0.49 0.16 0.06 0.03 

MAPE [%] 17.58 63.56 173.12 183.97 187.0 

GRU 

Prediction Horizon [h] 1 3 6 9 12 

MAE [m/s] 0.91 1.96 6.41 8.49 8.85 

MSE [m2/s2] 1.45 5.92 47.56 80.69 87.04 

RMSE [m/s] 1.20 2.43 6.89 8.98 9.33 

Pearson 0.91 0.71 0.47 0.03 0.03 

R2 0.83 0.50 0.22 0.001 0.001 

MAPE [%] 18.35 45.84 149.54 197.63 204.7 

LSTM 

Prediction Horizon [h] 1 3 6 9 12 

MAE [m/s] 0.89 3.45 5.85 6.08 6.13 

MSE [m2/s2] 1.43 16.15 42.22 45.03 45.71 

RMSE [m/s] 1.19 4.02 6.49 6.71 6.76 

Pearson 0.91 0.63 0.13 0.10 0.09 

R2 0.84 0.39 0.01 0.01 0.01 

MAPE [%] 17.33 88.09 146.65 151.25 152.4 
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a) 

 
  

b) 

 

Figure 6: Graphical comparison of a) the RMSE [m/s] and b) Pearson coefficient 

at different prediction horizons for different ANN models (height: 101.80 m). 

Nowcasting refers to short lead-time weather forecasts. The U.S. National 

Weather Service specifies a lead-time of zero to three hours, although 

forecasts of up to six hours may also be called nowcasts by some agencies. 

Nowcasting is usually performed with techniques that differ significantly 

from the usual numerical weather prediction models (Kuikka, 2009; Zucatelli 

et al., 2019e). Figure 7 shows a comparison of the statistical results for the 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 3 4 5 6 7 8 9 10 11 12

R
M

S
E

 [
m

/s
]

Time Horizon [h]

MLP RNN GRU LSTM

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12

P
ea

rs
o

n
 c

o
rr

el
at

io
n

 c
o

ef
fi

ci
en

t

Time Horizon [h]

MLP RNN GRU LSTM

ISSN: 1690-4524                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 19 - NUMBER 1 - YEAR 2021                             227



 

 

root mean squared error [m/s] at different heights for the wind speed 

prediction at 6 h (which is important in nowcasting to short lead-time wind 

speed forecasting) using different ANNs. The best results were recorded for 

MLP followed by LSTM. 

 

 

Figure 7: RMSE [m/s] for 6 h ahead using MLP, RNN, GRU, and LSTM at 

different heights. 

Figure 8 shows the dispersion between the anemometer and predicted wind speed 

6 h ahead using MLP (i.e. nowcasting). Figures 9 a), b), and c) present a 

comparison of the results for the 6 h ANN wind speed forecasted (nowcasting) 

through the MLP designed in Zucatelli et al. (2019a) with the actual data 

recorded at Colonia Eulacio at the anemometer height of 101.80 m. The ratio 

between the wind speed predicted by the ANN model and that measured by the 

anemometer is also plotted with respect to the time and the measured wind speed. 

The middle lines in the plots indicate one-to-one correspondence, and the outer 

lines indicate differences by a factor of two (Fac2). 
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Figure 8: Dispersion results for forecast 6 h ahead at 101.80 m. 

 

a) 
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b) 

 
  

c) 

 

Figure 9: Short-term wind speed prediction for 6 h ahead (nowcasting): a) The 

results of six-step predictions of the wind speed series [m/s]; b) Comparison of 

Fac2 versus time [h], and c) Comparison of Fac2 versus anemometer wind speed 

[m/s]. 

The degradation of the forecast can also be seen from the movement of the 

predicted curve away from the actual curve as the forecast horizon increases. 

Table 5 presents the percentage of the predicted wind speeds that match the actual 
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wind speed within a factor of two. The MLP and LSTM models are the only 

models that maintained results within the factor of two (i.e Fac2) above 58% of 

the forecasts. 

Table 5. Percentage of the forecasts within a factor of two (height: 101.80 

m). 

ANN model Prediction horizon 
Percentage of the forecasts within a 

factor of two, Fac2 

MLP 

1 h 98.44% 

3 h 93.29% 

6 h 88.29% 

9 h 82.43% 

12 h 77.44% 

RNN 

1 h 98.21% 

3 h 84.64% 

6 h 50.67% 

9 h 47.90% 

12 h 46.69% 

 

GRU 

1 h 97.79% 

3 h 93.71% 

6 h 56.92% 

9 h 43.58% 

12 h 40.69% 

LSTM 

1 h 98.29% 

3 h 76.94% 

6 h 60.70% 

9 h 59.05% 

12 h 58.39% 

 

The results in Figure 10 indicate that on average, the MLP ANN has better results 

than the persistence model for a prediction horizon of 1 h. 
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Figure 10: Comparison between the ANN models and the persistence reference 

model for wind speed forecasting 1 h ahead. 

The investigation of mechanisms that aid the short-term wind speed forecasting 

for 1 h to 12 h ahead as performed in this study for energy generation in wind 

farms has been critical for ensuring the proper functioning of traditional energy 

systems. Accurate prediction of the short-term wind speed output helps system 

operators to  

 

i. reduce the operational costs of the power system, 

ii. mitigate the adverse effects of wind power fluctuations, 

iii. adjust scheduling plans in a timely manner, 

iv. make correct decisions, and 

v. reduce standby capacity.  

 

Wind energy has become a major source of electricity supply in Uruguay and 

around the world. The large contribution of wind energy to the reliable operation 

of the electric power network today makes the application of supervised machine 

learning AI to wind speed forecasting very important. Wind energy has 

characteristics that differ from electricity generation powered by coal, 

petroleum, nuclear, and natural gas. Because wind generation is driven by 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

10.00 25.70 81.80 101.80

W
in

d
 s

p
ee

d
 f

o
re

ca
st

in
g
 1

 h
 a

h
ea

d
, 
R

M
S

E
 

[m
/s

]

Anemometer's height [m]

Persistence reference model MLP LSTM GRU RNN

232                              SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 19 - NUMBER 1 - YEAR 2021                             ISSN: 1690-4524



 

 

meteorological processes, it is intrinsically variable and has real-time 

fluctuations on the time scale ranging from minute-to-minute fluctuations to 

yearly variations affecting long-term planning for utility operations. These 

characteristics can require changes in system operational practices and the 

potential addition of flexibility reserves to help manage increased variability and 

uncertainty from wind energy. 

 

 

4. Conclusions 

 

The application of computational intelligence (supervised machine learning) is 

a viable alternative for the forecasting of wind speed and thus wind energy 

generation mainly because of the low computational cost. However, an ANN 

configuration that is appropriate for the forecasting must be selected, and the 

data fed to the model must be quantitatively and qualitatively analyzed because 

these variables directly impact the prediction results. This research is relevant 

because it is a first step in the application of the MLP, RNN, GRU, and LSTM 

models to wind speed forecasting. There have been no previous studies on the 

application of computational intelligence using supervised machine learning and 

deep learning through such ANNs for this region.  

 

The statistical results for the prediction horizons of 1 h to 12 h for each 

anemometric height exhibit predictable behavior similar to that for short time 

ranges. These results are novel because no other studies have used these 

computational models to predict the wind speed in Uruguay. The MLP and 

LSTM models are adequate for wind speed forecasting at different heights. From 

the analysis, it was found that the MLP model is superior to the other neural 

network models because it can achieve a relatively lower prediction error. The 

MLP approach introduced here uses a differentiated process of forecasting based 

on inference.  

 

The surprising result is that the simplest model architecture of a MLP (using the 

Levenberg–Marquardt algorithm, also known as the damped least-squares 

method) with only two hidden layers containing one neuron in each layer gives 

the best performance among the considered architectures. This result suggests 

that deeper neural network architectures (deep learning), ensemble other models, 

may achieve higher performance. The 1 h to 6 h forecasts are particularly 
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accurate (i.e. nowcasting). As the forecast time increased, the accuracy of the 

results decreased, as expected. However, this degradation does not render the 

forecasting results for longer prediction horizons useless. The proposed 

technique can still produce satisfactory short-term wind speed forecasts of up to 

12 h with low computational costs to help wind-farm operators with decision 

making.  

 

This study contributes to the scientific community considering the interest of 

private companies and UTE in the energy sector by providing wind speed 

prediction information for Uruguay. Future work can study the application of 

wavelets decomposition to weather data and deep learning technology (LSTM, 

GRU, and CNN or convolutional neural networks) for wind speed and wind 

power forecasting. Wind ramps and longer forecasting horizons are also future 

subjects for research. 
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