Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


Philosophy and Cybernetics: Questions and Issues
Thomas Marlowe, Fr. Joseph R. Laracy
(pages: 1-23)

Reconceiving Cybernetics in Light of Thomistic Realism
John T. Laracy, Fr. Joseph R. Laracy
(pages: 24-39)

Nascent Cybernetics, Humanism, and Some Scientistic Challenges
Zachary M. Mabee
(pages: 40-52)

Kant, Cybernetics, and Cybersecurity: Integration and Secure Computation
Jon K. Burmeister, Ziyuan Meng
(pages: 53-78)

Interplay Between Cybernetics and Philosophy as an Essential Condition for Learning
Maria Jakubik
(pages: 79-97)

Towards a General Theory of Change: A Cybernetic and Philosophical Understanding
Gianfranco Minati
(pages: 98-109)

Artificial Intelligence and Human Intellect
Víctor Velarde-Mayol
(pages: 110-127)

The Philosophy of Cybernetics
Jeremy Horne
(pages: 128-159)

Cybernetics and Philosophy in a Translation of Oedipus the King and Its Performance
Ekaterini Nikolarea
(pages: 160-190)

Linguistic Philosophy of Cyberspace
Rusudan Makhachashvili, Ivan Semenist
(pages: 191-207)

Systems Philosophy and Cybernetics
Nagib Callaos
(pages: 208-284)


 

Abstracts

 


ABSTRACT


Optimizing Ship Classification in the Arctic Ocean: A Case Study of Multi-Disciplinary Problem Solving

Mark Rahmes, Rick Pemble, Kevin Fox, John Delay


We describe a multi-disciplinary system model for determining decision making strategies based upon the ability to perform data mining and pattern discovery utilizing open source actionable information to prepare for specific events or situations from multiple information sources. We focus on combining detection theory with game theory for classifying ships in Arctic Ocean to verify ship reporting. More specifically, detection theory is used to determine probability of deciding if a ship or certain ship class is present or not. We use game theory to fuse information for optimal decision making on ship classification. Hierarchy game theory framework enables complex modeling of data in probabilistic modeling. However, applicability to big data is complicated by the difficulties of inference in complex probabilistic models, and by computational constraints. We provide a framework for fusing sensor inputs to help compare if the information of a ship matches its AIS reporting requirements using mixed probabilities from game theory. Our method can be further applied to optimizing other choke point scenarios where a decision is needed for classification of ground assets or signals. We model impact on decision making on accuracy by adding more parameters or sensors to the decision making process as sensitivity analysis.

Full Text