Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


Philosophy and Cybernetics: Questions and Issues
Thomas Marlowe, Fr. Joseph R. Laracy
(pages: 1-23)

Reconceiving Cybernetics in Light of Thomistic Realism
John T. Laracy, Fr. Joseph R. Laracy
(pages: 24-39)

Nascent Cybernetics, Humanism, and Some Scientistic Challenges
Zachary M. Mabee
(pages: 40-52)

Kant, Cybernetics, and Cybersecurity: Integration and Secure Computation
Jon K. Burmeister, Ziyuan Meng
(pages: 53-78)

Interplay Between Cybernetics and Philosophy as an Essential Condition for Learning
Maria Jakubik
(pages: 79-97)

Towards a General Theory of Change: A Cybernetic and Philosophical Understanding
Gianfranco Minati
(pages: 98-109)

Artificial Intelligence and Human Intellect
Víctor Velarde-Mayol
(pages: 110-127)

The Philosophy of Cybernetics
Jeremy Horne
(pages: 128-159)

Cybernetics and Philosophy in a Translation of Oedipus the King and Its Performance
Ekaterini Nikolarea
(pages: 160-190)

Linguistic Philosophy of Cyberspace
Rusudan Makhachashvili, Ivan Semenist
(pages: 191-207)

Systems Philosophy and Cybernetics
Nagib Callaos
(pages: 208-284)


 

Abstracts

 


ABSTRACT


In vitro and in silico Approaches to the Identification of New Compounds with Antibacterial Profile

Carlos R. Rodrigues, Bruno Leal, Kely N. De Oliveira, Ariane S. S. R. Ferreira, Alice Bernardino, Ricardo J. Nunes, Vitor Ferreira, Maria C. De Souza, Anna C. Cunha, Helena C. Castro


The emergence of multidrug-resistant bacterial strains is a world problem that increases the need for new and more effective antimicrobials. On that purpose, derivatives of cyclic systems may serve as new leads for discovering new active molecules. In this work we evaluated the antibacterial profile of 243 molecules derived from the systems thienopyridine, pyrazolopiridine, quinolone, chalcone, hydrazone and lapachone against Gram-positive and Gram-negative susceptible and multiresistant strains also comparing them with antibiotics of clinical use. Our results showed that among the 243 molecules tested, only eight derivatives were active with promissing MIC values (2-64mg/mL). Our theoretical in silico analysis showed that all active compounds fulfilled Lipinski rule of five (molecular weight = 344.37–409.24, clogP = 3.15–4.11, nHBA = 6–7, and nHBD = 2), similarly to commercial drugs as well as presented better druglikeness values (from -3.68 to 0.12) than chloramphenicol (-4.61) and linezolid (-4.08). Most of the active derivatives presented a low in silico toxicity risk profile, similar to oxacillin, ampicillin, and penicillin G, and even lower than that observed for chloramphenicol and linezolid. Theoretically HOMO and the electrostatic protential distribution may be contributing for this safer profile. This study used computacional tools and may help to deal with an important world health problem.

Full Text