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ABSTRACT

A spatial  configuration  of  a  rudimentary,  static,  real-
world scene with known objects (animals) and properties 
(positions and orientations) contains a wealth of syntactic 
and semantic spatial information that can contribute to a 
computational  understanding  far  beyond  what  its 
quantitative details alone convey.  This work presents an 
approach  that  (1)  quantitatively  represents  what  a 
configuration  explicitly  states,  (2)  integrates  this 
information  with  implicit,  commonsense  background 
knowledge  of  its  objects  and  properties,  (3)  infers 
additional,  contextually  appropriate,  commonsense 
spatial  information  from  and  about  their 
interrelationships,  and  (4)  augments  the  original 
representation  with  this  combined  information.   A 
semantic  network  represents  explicit,  quantitative 
information  in  a  configuration.   An  inheritance-based 
knowledge base  of  relevant  concepts  supplies  implicit, 
qualitative  background  knowledge  to  support  semantic 
interpretation.   Together,  these  structures  provide  a 
simple, nondeductive, constraint-based, geometric logical 
formalism  to  infer  substantial  implicit  knowledge  for 
intrinsic and deictic frames of spatial reference.

Keywords:  Spatial  Knowledge  Representation, 
Reasoning, and Generation.

INTRODUCTION

In  most  graphics  applications,  object  positions  and 
orientations are represented quantitatively as coordinates 
and  angles,  respectively.   While  this  form  is  very 
effective  at  explicitly  describing  where  they  are  for 
computational  purposes,  it  neglects  the  implicit, 
qualitative  relations  that  people  can  easily  infer  and 
understand; e.g., the dog, which is near the tree, is facing 
the  cat.   The  goal  of  this  work  is  to  take  minimal 
quantitative  spatial  information  and  infer  unstated 
relationships  to  generate  additional,  qualitative 
knowledge  about  a  scene.   The  approach  provides  a 
flexible,  configurable,  knowledge-based  framework  for 
geometric  constraint  satisfaction  that  can  be  useful  in 
many applications, especially in artificial intelligence and 
natural-language processing.

BACKGROUND

Properly  interpreting  three  frames  of  spatial  reference 
plays a critical role [15, 4, 22, 11, 12, 2].  The intrinsic 
(or  object-centered)  frame  generally  applies  to  objects 
that have a canonical front; e.g., in front of the dog means 
some position extending along its orientation axis.  The 
extrinsic  (or  environment-centered)  and  deictic  (or 
viewer-centered) frames are generally the opposite case 
for objects without a canonical front; e.g., in front of the 
tree means extending from it to another position in the 
world  that  establishes  a  virtual  front.   In  the  extrinsic 
frame, this reference position is arbitrary; e.g., in front of  
the  tree  as  seen from the  horse.   In  the  deictic  frame, 
which  is  a  specialized  case  of  the  extrinsic,  it  is  the 
(usually implicit) position of the viewer; e.g.,  in front of  
the tree (as seen by the viewer in the south looking north). 
For space reasons, this paper considers only the intrinsic 
and deictic frames.

This  work  directly  extends  and  complements  previous 
work by Tappan [31, 32] as the counterpart to generating 
spatial  layouts  of  objects  based  on  natural-language 
descriptions.  Its approach to inferring spatial knowledge 
loosely draws upon other work by Neumann [17], Walter 
et al. [36], Koller et al. [19], and Tsotsos [33] for scene 
interpretation.   Tversky  [34]  covers  in  comprehensive 
detail  many  of  the  spatial  issues  that  complicate  the 
problem.  Herskovits [15], Claus et al.  [4], and Olivier 
and Tsujii [22], in particular, form the basis for defining 
and interpreting spatial frames of reference.  Most early 
approaches to spatial analysis adopted purely geometric 
solutions and did not take advantage of spatial knowledge 
relevant  to  the  objects  [38,  40].   More  recent  work, 
especially in Geographic Information Systems, attempts 
to account for such contextual information [24, 6, 8, 9, 
10, 14, 25].  This work follows the latter approach.

EXPLICIT SPATIAL REPRESENTATION

Stage  1  involves  quantitatively  representing  what  is 
explicitly  known  about  a  spatial  configuration.   A 
configuration is a collection of objects that individually 
have the numeric properties of a two-dimensional center 
position (x,y in meters, increasing from west to east and 
south  to  north,  respectively)  and  an  orientation  (in 
degrees, with 0 as north).  Configurations can come from 
many sources depending on the application.  This work is 
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linguistically  motivated,  so  it  generally  derives  them 
from handcrafted English sentences.  For example, either 
sentence (2a) or (2b) can entail the same configuration of 
shelby.position=(1,3),  shelby.orientation=0, 
and  tree.position=(1,5).   Sentence  (1)  does  not 
define  any  spatial  information,  but  it  does  provide 
important contextual information for understanding what 
Shelby is.

1. Shelby is a retriever.

2a. The tree is north of Shelby, and she is facing north.
2b. The tree is north of Shelby, and she is facing the tree.

The  world  in  which  objects  reside  is  a  static,  two-
dimensional,  tabletop  zoo  environment.   It  currently 
supports  108  unique,  non-articulated  kinds  of  objects, 
mostly  animals  and  plants,  that  were  selected  because 
they exhibit  great variety in their spatial characteristics 
and  interpretations  [31].   It  is  straightforward  to  add 
others.   The  static  aspect  eliminates  the  effects  of 
movement,  time dependencies, the frame problem, etc., 
which are well beyond the scope of this work [1, 27, 29, 
5].

The  underlying  representation  of  a  configuration  is  a 
simple semantic network, which is particularly suited to 
this  task  for  three  reasons  [27].   First,  its  primary 
components (nodes and directional arcs) map directly to 
the objects and properties in a configuration, respectively, 
and  to  the  relations  that  will  later  augment  it.   For 
example,  Figure  1  is  a  semantic  network  that  derives 
from either (2a) or (2b).  The object world-center (wc) is 
automatically  generated  at  the  origin  (0,0)  to  facilitate 
global position references like in the north, etc.

Figure 1:  Semantic Network

Second,  as  a  straightforward  computational  data 
structure, all standard graph algorithms can operate on it 
natively.   Third,  as  a  well-studied and commonly used 
formalism  for  artificial  intelligence,  it  facilitates 
transferring knowledge representations to and from other 
related applications [26, 28].

IMPLICIT STATIC INFERENCE

Stage 2 involves deriving the unstated attributes and rules 
that  implicitly  describe  the  spatial  relations  that  could 
apply to each object in the configuration; e.g.,  Shelby is 
south of the tree.  This form of inference is static in the 
sense  that  it  considers  each  object  in  isolation,  not  in 
context with the other objects [6].

Knowledge Representation

Despite  its  name,  the  semantic  network  explicitly 
represents  only  the  syntax  (or  structure)  of  the 
configuration without any consideration of its real-world 
semantics  (or  meaning).   To  understand  the  semantics 
even superficially requires deeper analysis into what the 
objects are and how their rules apply to them in context 
[7].

The  source  of  the  implicit,  commonsense  background 
knowledge for this analysis is a simple knowledge base 
that  is  similar  to  an  inheritance  hierarchy  in  object-
oriented  programming  [16].   It  currently  contains  108 
prototypical concepts (or  classes), each of  which either 
inherits  its  attributes and rules for spatial  interpretation 
from  its  ancestors,  or  it  defines/overrides  them  itself. 
Only  single  inheritance  is  supported;  in  principle, 
multiple  inheritance  could  provide  a  richer,  more 
compact  representation,  but  the  additional  complexity, 
especially  for  conflict  resolution,  is  currently  not 
justifiable.  A simplified example appears in Figure 2.

Figure 2:  Knowledge Base

An  attribute  defines  whether  a  concept  exhibits  a 
particular  spatial  behavior.   The  only  one  found to  be 
necessary in this paper specifies whether a concept has a 
canonical  front,  which  generally  corresponds  to  its 
having a face or eyes.  As objects and concepts are not 
articulated,  any  head  is  always  fixed  in  line  with  the 
orientation  of  the  body.   This  simplification  eliminates 
the  need to determine  the  configuration  of  body parts; 
e.g.,  the  body  of  the  dog  is  oriented  north,  but  it  is 
looking east.

A rule  specifies  when a particular  relation,  like  near, 
applies from one object to another.  It uses a formalism of 
geometric fields that  describe a collection of  cells  in a 
two-dimensional,  top-view,  polar  projection  centered 
around the object [39, 40, 12, 22, 11].  Experimentation 
suggests  that  32  sectors  and  100 rings  of  the  form in 
Figure 3 are sufficient for the current domain of concepts 
and relations.  Each cell defines a small subregion of the 
projection  that  can  be  conditionally  inspected  for  the 
presence  of  other  objects.   The  implementation  in  this 
paper does not account for the dimensions of an object, 
so this  check is  based only on  its  center  position as a 
point source.  
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Figure 3:  Available Cells

Although any  combination  of  selected cells  among the 
3,200 available is valid, in practice, only minor variations 
of  two  types  define  all  spatial  relations  in  this  work: 
wedges apply  to  position  and orientation  relations,  and 
rings to  distance  relations.   Figures  4a  and  4b  show 
respective examples of the relations frontof and far
from for object  c1, which is facing the direction of the 
arrow.

Each concept  in  the  knowledge base  has  access  to  the 
attributes  and  rules  that  are  appropriate  for  its  spatial 
interpretation.   In  particular,  these  rules  define  the  77 
distance,  orientation,  and position  relations  in  Tables  1 
through 3, respectively.  For space reasons, Tables 2 and 
3 omit for each relation a prefixed variant direct, which 
specifies a narrower interpretation with the same general 
meaning; e.g.,  directfrontof would fan out less to 
the sides. The interpretation of appropriateness depends 
on  certain  ad  hoc generalities  of  the  concept,  which 
depend on the application of this work.  For example, the 
relation  near is closer (in absolute terms) for a mouse 
than  it  is  for  an  elephant  due  to  their  differences  in 
magnitude [13, 22, 30].  Many relations in Table 3 have 
both local and global forms, which respectively apply 
in the intrinsic and deictic frames of reference.

# Relation # Relation
26 inside 30 midrange-from
27 outside 31 far-from
28 adjacent-to 32 at-fringe-of
29 near

Table 1:  Distance Relations

# Relation # Relation
33 facing 38 facing-west
34 facing-away-from 39 facing-northeast
35 facing-north 40 facing-northwest
36 facing-south 41 facing-southeast
37 facing-east 42 facing-southwest

Table 2:  Orientation Relations

# Relation # Relation
1 local-front-of 14 global-front-right-of
2 local-back-of 15 global-back-left-of
3 local-left-of 16 global-back-right-of
4 local-right-of 17 between
5 local-front-left-of 18 north-of
6 local-front-right-of 19 south-of
7 local-back-left-of 20 east-of
8 local-back-right-of 21 west-of
9 global-front-of 22 northeast-of
10 global-back-of 23 northwest-of
11 global-left-of 24 southeast-of
12 global-right-of 25 southwest-of
13 global-front-left-of

Table 3:  Position Relations

The final  element of  this stage combines the explicitly 
stated information  from the  semantic  network with the 
implicitly  inferred  background  knowledge  from  the 
knowledge base.  Figure 5 depicts a simplified example 
of this process:  Objects Shelby and tree link to concepts 
RETRIEVER and  TREE,  respectively.   Through 
inheritance,  Shelby derives the rules about her  ancestor 
concepts  DOG,  CANINE,  ANIMAL,  LIVINGTHING,  and 
THING.  The same process holds for tree.  It is important 
to  note  the  distinction  between  an  object,  which  is  a 
unique  instance  in  the  configuration,  and  a  concept, 
which  is  a  shared  set  of  attributes  and  rules  that  all 
instances of  it  must  have in common.  For clarity, this 
distinction is rendered typographically through italics and 
capitalized typewriter font, respectively.

Figure 5:  Semantic Network Linked to Knowledge Base

IMPLICIT DYNAMIC INFERENCE

Stage 3 involves determining which rules apply among 
the candidates derived in Stage 2.  This form of inference 
is  dynamic  in  the  sense  that  it  considers  each  object 
pairwise in context with all the other objects [6].  It is a 
nondeductive reasoning mechanism because it uses only 
straightforward,  geometric  constraint  satisfaction  as  the 
logical foundation [23, 35, 21].

For  any  object  o1 with  a  canonical-front  attribute,  the 
default frame of reference is intrinsic; i.e., any o2 in front 
of o1 is roughly in line with the direction o1 is facing.  A 
field reflects this spatial behavior by rotating itself so that 
its arrow aligns with the orientation of o1.  Thus, its front 
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field aligns with this direction, and its back, left, and right 
fields respectively align 180˚, 90˚, and 90˚ from it.  In 
contrast, for any object  o1 without a canonical front, the 
only possible frame of reference is deictic; i.e., any o2 in 
front of  o1 is in line between o1 and the implicit viewer, 
who by default resides in the south-center of the world 
and looks north.   In  this  case,  the  arrow aligns  to  the 
position  of  the  viewer.   Finally,  all  concepts  support 
absolute compass orientations for relations like  north
of, southof, etc.  In this case, the arrow always aligns 
north.

Inference Generation

Exhaustive inspection of every pairwise combination of 
objects  produces  a  list  of  relations  that  the  semantic 
network  logically  entails  [4,  37].   The  following 
pseudocode outlines this process:

 1 for each object o in semantic network S
 2   position and orient o from its properties
 3 for each object o1 in S
 4   for each object o2 in S where o2o1
 5     for each relation r in Tables 1,2,3  
       contextually applicable for pairing o1ro2

 6       if o2.position is in r.field,  
         add r from o1 to o2 in S

This  approach  augments  the  purely  quantitative 
representation  in  Figure  1  with  qualitative  spatial 
inferences to produce the augmented semantic network in 
Figure 6.

Figure 6:  Augmented Semantic Network1

Figure  7  depicts  an  extended  example  with  a 
configuration containing a tree T, a zebra Z, and a giraffe 
G, plus world-center W.  The arrows on Z and G indicate 
their orientation.

These  four  objects  produce  the  46  (non-unique) 
inferences in Table 4, where the numbers correspond to 

1 For space reasons, world-center is omitted.

the relations in Tables 1 through 3.  The corresponding 
augmented  semantic  network  for  even  such  a  simple 
configuration is too rich and intertwined to depict here.

o2

r G T Z W

o1

G 14, 24
30, 35

13, 25
30, 35

13,25
31,35

T 5,15
23,30

1,11
21,30

13,21
31

Z 6,16
22,30,38

12,20
30,33,38

9,19
29,38

W 16,22
31

12,20
31

10,18
29

Table 4:  Relationship Inference Matrix

RESULTS AND DISCUSSION

The  results  were  evaluated  based  on  the  numerical 
relationship between the number of objects stated in the 
input and the number of relations inferred in the output. 
This  relationship  is  very  sensitive  to  the  position  and 
orientation of each object, so a stochastic experiment was 
performed to demonstrate average results.   Independent 
tests were conducted on 3 through 10 objects (including 
world-center), which referenced the same concepts.  Each 
test was divided into 10,000 independent runs, in which 
the objects were randomly configured.  For each run, the 
number  of  unique  generated  inferences  was  recorded. 
Figure 8 shows the average for each test, which varied 
from 27 for 3 objects to 602 for 10 objects.

Figure 8:  Derived Relations

This relatively simple, straightforward, flexible approach 
to  augmenting explicit  spatial  configurations  is  clearly 
effective  for  mainstream,  accepted  interpretations  of 
basic  objects  in  two  dimensions.   It  generates  a 
substantial number of potentially useful spatial inferences 
in  acceptable  time  complexity:   θ(ro2),  where  r is  the 
number of  candidate relations to evaluate,  and  o is  the 
number of objects in a configuration.  Human cognitive 
limits  usually  dictate  o < 6  in  linguistic  configurations, 
so,  in  practice,  the  scalability  of  this  approach  is  not 
actually a factor for such applications [18].
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Frame  of  spatial  reference  was  found  to  have  the 
following effects on relations in this work:

• Position  relations  distinguish  between  intrinsic  and 
deictic  interpretations  with  the  respective  prefixes 
local and global.  Both may apply simultaneously 
because a  deictic interpretation always accompanies 
an intrinsic one; the converse, however, does not hold. 
For example,  the tree is in front of the dog, from the 
intrinsic perspective of the dog, means in line with the 
orientation  of  the  dog,  whereas  from  the  deictic 
perspective of the viewer, it means between the dog 
and the viewer, irrespective of the orientation of the 
dog.

• Orientation  relations  apply  only  in  an  intrinsic 
interpretation.  For example, the dog is facing the cat 
is valid, but  the tree is facing the cat is not, because 
dog has a canonical front, and tree does not.

• Distance  relations  apply  in  any  interpretation.   For 
example, in both the dog is near the tree and the dog 
is near the cat, the orientations of the tree and cat are 
irrelevant to the relation near.

FUTURE WORK

Two categories of related work are under consideration. 
The  first  extends  the  current  domain  of  relations  to 
compare  the  dimensions  of  objects;  i.e.,  contextually 
larger,  equally  sized, or  smaller  with respect  to height, 
width, and depth.  The inference stages are identical, but 
the rule formalism of geometric fields does not translate 
easily.  The second category has two aspects that involve 
post-processing the  augmented semantic  network.   The 
first involves identifying latent pragmatics of scenarios to 
aid in scene recognition and gisting [20].  For example, a 
spatial configuration that describes a tiger facing a zebra 
from  behind  a  nearby  tree  may  imply  an  impending 
attack.   The second aspect  involves generating natural-
language descriptions and summaries from an augmented 
spatial  configuration.   In  crude,  verbose  form,  this 
capability already exists, as Table 4 shows.  However, it 
lacks a mechanism for determining salience (i.e., what to 
say  and  what  to  omit),  and for  planning  and  realizing 
acceptable text (i.e., how to say it) [3].
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