

 Compilation Techniques Specific for a Hardware Cryptography-Embedded

Multimedia Mobile Processor

Masa-aki FUKASE
Graduate School of Science and Technology, Hirosaki University

Hirosaki, 036-8561, Japan

and

Tomoaki SATO
C&C Systems Center, Hirosaki University

Hirosaki, 036-8561, Japan

ABSTRACT

The development of single chip VLSI processors is the key
technology of ever growing pervasive computing to answer
overall demands for usability, mobility, speed, security, etc.
We have so far developed a hardware cryptography-embedded
multimedia mobile processor architecture, HCgorilla. Since
HCgorilla integrates a wide range of techniques from
architectures to applications and languages, one-sided design
approach is not always useful. HCgorilla needs more
complicated strategy, that is, hardware/software (H/S) co-
design. Thus, we exploit the software support of HCgorilla
composed of a Java interface and parallelizing compilers. They
are assumed to be installed in servers in order to reduce the
load and increase the performance of HCgorilla-embedded
clients. Since compilers are the essence of software’s
responsibility, we focus in this article on our recent results
about the design, specifications, and prototyping of
parallelizing compilers for HCgorilla. The parallelizing
compilers are composed of a multicore compiler and a LIW
compiler. They are specified to abstract parallelism from
executable serial codes or the Java interface output and output
the codes executable in parallel by HCgorilla. The prototyping
compilers are written in Java. The evaluation by using an
arithmetic test program shows the reasonability of the
prototyping compilers compared with hand compilers.

Keywords: Processor, H/S Co-Design, CMOS, Parallelizing
Compiler, Java, Pervasive Computing, Hardware Cryptography.

1. INTRODUCTION

The emergence of pervasive computing is due to Internet
expansion, multimedia computing, and mobile computing.
Although this is inevitability, the expansion or diversity of
pervasive platforms has also caused notorious security issues as
is illustrated in Fig. 1. Facing with such circumstances in our
daily life, we have felt alternative impressions, diversity or
security [1]. Many ways to guarantee secureness have been
taken, but they are time and power consuming in a word. This
is because security techniques are mostly implemented in
software and pervasive computing treats huge amount of
multimedia data. The development of high performance
application-specific and domain-specific systems is an
innovative research of common interest [2]. In order to clear

overall issues, the hardware integration of related techniques is
indispensable for pervasive environment.

Fig. 1. The trend and issues of pervasive computing.

The development of single chip VLSI processors is the key
technology of ever growing pervasive computing to answer
overall demands for mobility, speed, and security in such a
field. Thus, we have so far exploited following processors.
a. A multimedia mobile processor named gorilla [3, 4].
b. A hardware cryptography-embedded processor named RAP

(random addressing-accelerated processor) [5, 6]. The
CMOS implementation of RAP showed its possibility for
stream cipher [7].

c. The integration of gorilla and RAP into HCgorilla [8].
HCgorilla was implemented by using CMOS standard cell
technologies [9]. Also, a language processing support was
studied to reduce the load and increase the performance of
HCgorilla [10], [11].
For these processors, one-sided design approach is not

always useful, because they integrate a wide range of
techniques from architectures to applications and languages.
Especially, HCgorilla needs more complicated strategy, that is,
hardware/software (H/S) co-design to cover sophisticated
features of Java compatibility, hardware security, low power,
and high throughput.

Compilers are the essence of H/S co-design. Needless to
say Proebsting’s law: a compiler advances double computing
power every 18 years, compilers, especially paralellizing
compilers occupy absolute position in developing sophisticated
processors. Since compilers are most crucial for practicing

Internet
expansion

Secureness

Hardware
integration

Pervasive
computing

Multimedia
computing

Mobile
computing

Security threat

Time & power
consuming

Digital
divide

Information
flood

Symbiotic
system

Time & power
consuming

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 6 13ISSN: 1690-4524

HCgorilla’s parallelism in pervasive environment, we focus in
this article on our recent results about the design, specifications,
and prototyping of parallelizing compilers for HCgorilla. The
prototyping compilers are written in Java and evaluated in case
of arithmetic media codes compared with a hand compiler.
Although the evaluation is primitive, it shows the reasonability
of the prototyping compilers.

2. OVERVIEW OF HCGORILLA

Table 1 summarizes processors we have so far developed for
pervasive computing. The hardware cryptography-embedded
multimedia mobile processor, HCgorilla has been developed
considering the unification of RAP and gorilla has
advantageous potential for downsizing, power reduction, and
speedup.

Table 1. Architectures and processor derivatives related to
HCgorilla.

2.1 H/S co-design
H/S co-design scheme is indispensable for achieving PC-like
performance as well as pervasive computing features.
According to this, we have designed HCgorilla. Table 2
summarizes the strategy we have taken into account of in
developing HCgorilla. The top priority in developing
HCgorilla is to determine the target or application field. It
should cover the sophisticated multimedia processing, user-
friendly mobility, and comfortable pervasive computing
environment. As is clear from Table 2, individual strategies and
techniques to cover these demands overlap and are closely
related each other. Also their relations are very complicated.

Let us discuss some of key techniques shown in Table 2.
The power conscious highly performance of HCgorilla is due
to a novel architecture following symmetric multicore,
superscalar, and LIW (long instruction word) processor
techniques. LIW is not so broad parallelism like VLIW (very
long instruction word), yet it is effective to practically enhance
multimedia communication that deals with large quantity of
data in pervasive environment.

The parallelism of multicore and LIW is very promising for
power conscious high performance with the aid of parallelizing
compilers. It is not always necessary to distinct multicore
processors from multithreaded processors [12]. Although
multithreading is not always only one software technique for
parallelizing applications run on multicore chips [13], software

approach is not our main concern. Thus, we take into account
of TLP (thread level parallelism). TLP and ILP (instruction
level parallelism) are on the back of instruction folding by API
(application program interface) and a LIW compiler. In order to
cover LIW in conjunction with Java native codes,
microprogramming technique is useful. Then, the key
technique to detect the length of each instruction and distribute
it to appropriate pipes is superscalar-like IFU (instruction fetch
unit). We make this by a wired logic. On the other hand, data
level parallelism is covered by SIMD (single instruction stream
multiple data stream) mode execution. This is indispensable for
multimedia streaming.

Table 2. H/S co-design strategy for HCgorilla.

Wave-pipelining is really effective for both PC-level high
speed and mobile-level low power dissipation [14, 15]. Also,
wave-pipelining reduces software loads, because it is
completely a hardware approach. Conventionally, long delay
times have been wasted in accessing web pages and drawing
contents. This is due to iterative process within web servers,
network switches, and local clients to safely treat large amount
of packets.

Java is one of the most promising solutions for the
functionality of attractive multimedia entertainment. In order to
prepare real time protection of huge amount of multimedia data,
cipher proper instructions should be added to ISA (instruction
set architecture). What we have devised about Java are as
follows.
a. Compact ISA: Although complicated features demanded to

ISA tend to increase it, compactness is also important in
order to lighten the burden on hardware design. This is
solved by the format of code and the number of codes.

b. Platform-friendly language processing: Due to an
intermediate form or class file produced by Java compilers,
Java is more awkward than regular languages. Since
pervasive clients use small scale systems, we make large
servers cover the preprocessing of complicated class files
by API and compilers.

c. Direct execution of Java bytecode without JVM (Java virtual
machine): Although preprocessed class files are further
interpreted by JVM or JIT (just-in-time compiler) built-in
runtime systems, they need more ROM space. This
degrades response time, power consciousness, usability,
cost, and performance of mobile devices. Considering
hardware property as well as Java compatibility, we apply
the interpreter type Java CPU.

2.8-mm
chip

7 4000.18μm

HCgorilla018

SIMD2-wave
EX

3 (2
media

pipes and
a cipher
pipe)

2-
degree

63HCgorilla.2

4.9-mm
chip1500.35μmHCgorilla035

2 cipher-
embedded

media
pipes

818HCgorilla.1

FPGA45FPGANot available

SISD

1 cipher
pipe

5Not
available

17RAP

Synthesis200gorilla035v2

Not
available

7gorilla.2

4.9-mm
chip2400.35μmgorilla035Not

available

2-wave
EX2 media

pipes
82-

degree
16

gorilla.1

NumberDeg.
Waved

Regular

Pipelining
ILP

Current
status

Clock
(MHz)ProcessChip

Hardware
crypto-
graphy

Parallelism

Name

MicroarchitectureArchitecture

2

2

No.
of

cores

1

HCgorilla018
v2

Synthesis

Fo
rm

at

N
o.

 o
f

in
st

ru
ct

io
ns

ISA

JV
M

R
IS

C

W
ire

d
lo

gi
c

C
on

tro
l

JV
M

HCgorilla018
v3

5.9-mm
chip

Application
field

Demand Strategy Hardware

Ubiquitous

Mobile

Quick response

Reliable diversity

Learning

Interactive

Real time
Dynamic

Wearable

Global engineering

Strong cryptography

Object-oriented

Multithreading

Power consciousness

Platform neutrality

Interpreter
type Java
CPU

Multicore

Multimedia
Functionality

Media streaming SIMD
Entertainment

RAP

Wave-
pipelineHigh speed clock

Software

TLP

Java

Technique

High performance Parallelism LIW, compilerIFU

API

Needless

ISA

Needless

Cipher
API, compiler

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 614 ISSN: 1690-4524

2.2 Hardware organization
Fig. 2 shows the architecture of HCgorilla. Fig. 2 (a) illustrates
the hardware parallelism of double core and multiple pipelines.
Each core is composed of Java compatible two media pipes and
a cipher pipe. These pipes share the instruction fetch, opcode
fetch, decode, data cache access, and write back stages. In spite
of three pipes, instruction cache is made issue two executable
codes in parallel. This is enough even for fully parallel
execution. This is because SIMD mode cipher streaming does
not need the instruction fetch stage in the steady state of
streaming, and executes the streaming by repeating the later
four stages. The wired logic instruction fetch stage detects the
length of each instruction and distributes it to appropriate pipes.

Media pipes have the stack access and execute stages.
Since the media pipe is a devised interpreter type Java CPU,
operands are issued from stacks to the execute stages similar to
JVM. The cipher pipe has RNG (random number generator)
and register file access stages. The buffer of cipher streaming is
provided with a register file. Each pipe is partly wave-pipelined
for the power conscious high speed processing. Fig. 2 (b)
shows the latest derivative of HCgorilla.2 more in detail [16].

(a)

(b)

Fig. 2. The architecture of HCgorilla. (a) Parallelism. (b) Detail

of the latest derivative.

2.3 Cipher process
Since the cipher pipe is originally dedicated to HCgorilla, let us
describe it more in detail. The cipher pipe enables non-
traditional cryptographic streaming due to the extremely long
cycle of random numbers. These are easily produced by
making RNG with LFSR (linear feedback shift register). LFSR
falling into the category of M-sequence requires trivial
additional chip area and power dissipation. A tiny n-bit LFSR
produces the huge n-th power of 2 random numbers. The built-
in RNG is directly connected to the address line of data cache.
Due to the direct connection, the content of a specified register
file location is transferred to data cache addressed by the RNG

output. The transfer rate is several bytes per clock depending
on the width of the register file and data cache. The register file
plays the role of a pseudo-streaming buffer.

In order to save hardware resources, the register file for
buffering and data cache for destination operands are
physically shared by the cores. Although they are physically
shared, it is logically divided by using quasi 2-port I/O for the
single memory space. The physical share means that the cores
do not have their own memories but use a single memory space
in common. In order to mutually use the single space, their
addressing is not monotonous or logically divided. This is
made by automatically or hardwarily biasing addresses to be
distinguished. This is equivalent to have quasi 2-port I/O.

The SIMD mode execution by the cipher pipe is due to the
two executable codes, that is, a random store code rsw and a
random load code rlw. These are dedicated to simple and fast
cryptographic streaming. Fig. 3 illustrates an internal behavior
in executing rsw for the encryption of a byte string like text,
image, etc. Cryptographic streaming is the continuous
encryption or decryption of such data. Here, d1d2d3d4d5
exemplifies a plaintext block. 30241 is corresponding key or
RNG outputs. d2d5d3d1d4 is a resultant encrypted block.

Fig. 3. Execution of the SIMD mode cipher code rsw.

In the execution of rsw, the block and RNG’s output are
synchronized according their sequence. For example, the first
byte data “d1” and the first random number “3” are
synchronized and stored to the 3rd location of the data cache.
The sequence of random addressing store like this results in the
formation of an encrypted block in the data cache. Then, the
encrypted block is forwarded to the recipient and decrypted
similarly by rlw.

The common key process by using rsw and rlw is called
RAC (random number-addressing cryptography) [17]. Note
that random numbers themselves are not exchanged between
the sender and recipient. The initial value of RNG is crucial for
RAC and it should be treated by hyper protection. Practically,
public key is promising for communication between a sender
and a recipient, though it is no account in this study.

The block length and the size of the register file and data
cache are specified as follows.

Block length ≤ n-bit LFSR’s output length (2n)
= register file’s logical space size
= data cache’s logical space size.

Here, the size is the product of length and width (byte). The
logical space is the half size of a physical space as shown in
Fig. 2 (b). The block length, register file size, and data cache

0
1
2
3
4

Data cache

Random numbers

4 3 2 1 0
Sequence

30241

Sy
nc

hr
on

ou
s

4 3 2 1 0
Sequence

Address

0 1 2 3 4
Sequence Sequence

d2
d5
d3
d1
d4

d5d4d3d2d1

0 1 2 3 4Register
file

Initial
value

Common keyCommon key
Recipient’s
public key

Sender side cipher pipe Recipient side
cipher pipe

Store

RNG

Recipient’s
private key

Initial
value

Single
instruction

Multiple
data stream

(Buffer)

Encrypted
initial value

rsw
Plaintext in
byte string
(image,
text, etc.)

Plain-
text
block

d1d2d3d4d5d1d2d3d4d5

External
memory

Communica-
tion channel

Ciphertext
block

d2d5d3d1d4d2d5d3d1d4

Write back

Executable Executable
codescodes

Executable Executable
codescodes

Plaintext/Plaintext/
ciphertextciphertext

Core 2
OpcodeOpcode

Decode & operandDecode & operand

Instruction cache Instruction cache
fetchfetch

HCgorilla.2HCgorilla.2

Cipher/plaintextCipher/plaintext

Stack Stack
accessaccess

ExecuteExecute L
IW

RandomRandom
no. gene.no. gene.
Register Register

filefile
accessaccess

Data cache accessData cache access

InstructionInstruction
cachecache

Byte

A
dd

re
ss

Random/
serial addressRegister Register

filefile

Data cacheData cache

Core 1

Instruction cache Instruction cache
fetchfetch

OpcodeOpcode

Decode & operandDecode & operand

Data cache accessData cache access

Stack Stack
accessaccess

ExecuteExecuteL
IW

RandomRandom
no. gene.no. gene.
Register Register

filefile
accessaccess

Plaintext/
ciphertext

Instruction Instruction
cachecache

Media
pipes

Cipher
pipe

Logical space

B
yt

e

Address

Random/
serial address

Plaintext/
ciphertext

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 6 15ISSN: 1690-4524

size crucially influence the performance and security, assuming
the processing of one block per clock.

3. SOFTWARE ASPECTS

Various aspects related to the software system of HCgorilla,
except compiler techniques, are concentrated in this chapter.

3.1 Software Support System
Usual Java language systems have needed rather complicated
language processing and hardware organization in order to
achieve the platform neutrality. This is due to an intermediate
form or class file produced by using the Java compiler.
Although the class file contains many kinds of information, the
essence is Java byte codes, and the remaining is additional
information. This is really convenient for JVM, but secondary
for a processor itself. Yet, the complicated language processing
is imposed on platforms in general.

Since HCgorilla is a devised interpreter type Java CPU
without JVM, HCgorilla also needs the software support to
adjust class files and executable codes. The software support
includes Java interface and parallelizing compilers as shown in
Fig. 4. The software support best maps software threads onto
instruction cache.

Fig. 4. Language process flow.

Fig. 5. Software support for HCgorilla.

In order to release smaller platforms from heavy duties for
Java language processing, we are planning to install the
software support in larger servers. This is also effective to
increase the performance of client platforms. Fig. 5 exemplifies
a load-balancing network system. The network is composed of
servers, Internet, and HCgorilla systems. Then, an HCgorilla
system is formed by a mobile client embedded with an
HCgorilla chip and software support.

3.2 Executable Code Set
Table 3 summarizes the code set of HCgorilla.2 composed of
the two cipher codes and 61 Java compatible media codes.
These are carefully selected from the 202 Java bytecodes for
ever growing usage of Java in mobile fields [18].

Table 3. Code set of HCgorilla.2.

Fig. 6 shows the assembler/executable code format of
HCgorilla. The code format of JVM is added for comparison.
While a so-called instruction is formed by an opcode and an
operand, they are grammatically independent in case of
HCgorilla and JVM. Because the concept of the machine
instruction is vague as shown in Fig. 6, we do not say
instruction set but code set in this study.

Fig. 6. Code format of HCgorilla.

The opcode of HCgorilla is a media or cipher code. The
media codes are the subset of JVM. They operate for operand,
stack, and data cache. A media code refers operands stored just
after the opcode in instruction cache. The number of 1-byte
operands related to a media code is variable between 0 and 2.
Cipher codes function between register file and data cache.
Cipher codes are SIMD mode to do streaming for multimedia
data stored in register file. Cipher codes do not attach operands,
but get cipher data from register file.

1 byte

Operand

Java byte code
JVM

HCgorilla 1 byte

Operand

Opcode

1 byte

0-8 bytes

Architecture Executable codeAssembler code

(Java byte code)
Cipher code

Media code

Source file
※※※※※※：A file name

Class file (intermediate code)

HCgorilla018

yes

no

Java compiler JAVA 2 SDK
(software development kit)

※※※※※※.java

※※※※※※.class

Executable parallel codes

All the Java byte codes

UnfoldUnfold

Abstract the
Java byte codes

Abstract the
Java byte codes

Parallelizing compilers

Java interface

Executable serial codes

Generic
CPU

JVM

JIT type
Java
CPU

JIT

Interpreter
type Java

CPU

Abstract
the Java
bytecodes

Abstract
the Java
bytecodes

Server

Runtime
systems

Included
in ISA?
Included
in ISA?

Internet

Abstract TLPAbstract TLP

Abstract ILPAbstract ILP

Commercial processors

Repeat all the threads

iconst_3
iconst_4
iconst_5
sipush
aload

iload_0

iload_2
iload_3
aload_0
aload_1
aload_2
aload_3
astore

istore_0
istore_1

iconst_1
iconst_2

iload_1

iconst_0 0x03

0x04
0x05
0x06
0x07
0x08
0x11
0x19
0x1A
0x1B
0x1C
0x1D
0x2A
0x2B
0x2C
0x2D
0x3A

0

0
0
0
0
0
2
1
0
0
0
0
0
0
0
0
1

istore_2
istore_3

0x3B
0x3C
0x3D
0x3E

0
0
0
0

dup_x2
dup2

dup2_x1
dup_x2

imul
iushr

ifge
ifgt
ifle

if_icmpeq
if_icmpne
if_icmpge
if_icmpgt
if_icmple

dup
dup_x1

iflt

pop
pop2

0x4C

0x4D
0x4E
0x57
0x58
0x59
0x5A
0x5B
0x5C
0x5D
0x5E
0x68
0x7C
0x9B
0x9C
0x9D
0x9E

0

0
0
0
0
0
0
0
0
0
0
0
0
2
2
2
2

0x9F
0xA0
0xA2
0xA3

2
2
2
2

astore_1

astore_2
astore_3

0x4B 0astore_0 0xA4 2

BinaryMnemonic
Operand

(byte)

nop
bipush
iload
istore
iadd
isub

ishl
ishr
iand
ior

ixor
ifeq
ifne

if_icmplt
goto

rsw
rlw

0xF0
0xF1
0x00
0x10
0x15
0x36
0x60
0x64
0x74
0x78
0x7A
0x7E
0x80
0x82
0x99
0x9A
0xA1

ineg

0xA7

0
0
0
1
1
1
0
0
0
0
0
0
0
0
2
2
2
2

iconst_m1 0x02 0

Opcode

Cipher
codes

Media
codes

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 616 ISSN: 1690-4524

The policy of length variant reduced codes achieves the
compactness of HCgorilla’s code set. The length of an opcode
and its related operands is made variable within instruction
cache, which is effective to optimize cache size. The scheme of
dense codes at instruction cache is also effective to reduce
critical path delay and power dissipation. The compact scheme
of HCgorilla is not similar to ARM’s optimization scheme for
encoding density. While the encoding density of ARM’ ISA is
simply concerned with the bit density of executable codes,
dense codes at instruction cache referred to HCgorilla aim to
pack executable codes as many as possible without increasing
cache size. The compact code scheme is more preferable in
view of mobility.

Fig. 7. Language process flow specific for HCgorilla.

Table 4. The target of API and the LIW compiler.

3.3 Language processing
Fig. 7 abstracts language process flow specific for HCgorilla.
Table 4 summarizes the target codes of API and the LIW
compiler. Fig. 8 summarizes the Java interface flow specific for

HCgorilla. The Java interface plays as API, and is composed of
two components. The one abstracts Java bytecodes from a class
file. The other unfolds Java bytecodes not defined by
HCgorilla’s code set. Since the output is still serial codes, it
needs parallelizing compilers.

Fig. 8. Java interface.

4. COMPILATION TECHNIQUES

As shown in Figs. 4 and 5, HCgorilla’s compilers are specified
as follows.
a. To abstract parallelism from the Java interface output or

executable serial codes.
b. To readdress codes newly produced by parallelization to

avoid the conflict of data cache access.
c. To output the codes executable in parallel by HCgorilla.
d. To map parallel executable codes on instruction cache within

a core. In mapping, jump codes are renamed by modifying
their destination addresses.

In order to respond these steps, HCgorilla’s compilers are
composed of the multicore compiler and LIW compiler.

4.1 Multicore compiler
Table 5 summarizes threads of Java applications. They appear
at various levels. Threads at source code level are abstracted by
API. The target of this study is the abstraction of threads at
executable level. This is covered by the multicore compiler. Fig.
9 shows the current status of the multicore compiler.

Table 5. Various threads of Java applications.

TLP at executable level is judged by looking for return
process that expresses the end of instructions sequence or
thread. The multicore compiler does not readdress the second
thread needed to avoid the conflict of data cache access with
the first thread. The readdressing is covered by the hardwarily

Thread Granularity

Source code Large

Executable
code

Small

MyThread
Function

Library function
Loop

Method

API

Multicore
compiler

Abstract meansLanguage level

Others

Start

Read the no. of CP entry

Scan the class file to
the method section

Repeat the no. of methods Read 1-byte Java byte code

End

Executable?

84? Unfold 1

Unfold 3

yes

no

Unfold

8-byte scan the
class file

Read the no. of methods
Java bytecode

5f?

out2.dat

out2.dat

Executable serial code

Get the all CP entry data

Code attribute?
yes

no

Get the byte length
of the instruction

Abstract the byte-
length Java byte code

Multicore compilerMulticore compiler

LIW compilerLIW compiler

Java source fileJava source file

Executable parallel codesExecutable parallel codes

ThreadsThreads

Java compilerJava compiler

Java interfaceJava interface

baload,caload,saload,iaload,lalo
ad,faload,daload,aaload,bastore,
castore,sastore,iastore,lastore,fa
store,dastore,aastore,arraylength

new, newarray, anewarray,
multianewarray

ladd,fadd,dadd,lsub,fsub,dsub,lm
ul,fmul,dmul,idiv,div,fdiv,ddiv,ir
em,lrem,frem,drem,lneg,fneg,dn
eg,lshl,lshr,ushr,lor,land,lxor

aconst_null, lconst_<l>,
fconst_<f>, dconst_<d>, ldc,
ldc_w, ldc2_w, lload, fload, dload,
lload_<n>, fload_<n>, dload_<n>,
lstore, fstore, dstore, lstore_<n>,
fstore_<n>, dstore_<n>, wide

Ja
va

 b
yt

ec
od

es

No operation

Memory,
stack
access

Compare
and

branch

Method
call, return
Instance

generation

Array
access

Field access
Table jump

Object

Type
conversion
Arithmetic,
logic, shift
operation

Cipher

nop

i2l, i2f, i2d, l2i, l2f, l2d, f2i, f2l,
f2d, d2i, d2l, d2f, i2b, i2c, i2s

invokevirtual,invokespecial,invok
estatic,invokeinterface,ireturn,lret
urn,freturn,dreturn,areturn, return

lookupswitch, tableswitch
putfield,getfield,putfield,getstatic

rsw, rlw

ifnull, ifnonnull, lcmp, fcmpl,
fcmpg, dcmpl, dcmpg, goto_w,
jsr, jsr_w, ret

checkcast, instanceof, athrow,
monitorenter, monitorexit

HCgorilla’scode set
Next stepCategory Available

iconst_m1,
iconst_<i>, bipush,
sipush, pop,pop2,
dup,dup_x1,
dup_x2, dup2,
dup2_x1, dup2_x2

iadd, isub,
imul, ineg, ishl,
ishr, iushr,
iand, ior, ixor

ifeq,iflt,ifle,ifne,ifgt,i
fge,if_impeq,if_impn
e,if_implt,if_impgt,if
_imple,if_impge,goto

iinc

swap

API
LIW compiler

iload, iload_<n>,
aloadaload_<n>,
istore, astore,
istore_<n>,
astore_<n>

Serial

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 6 17ISSN: 1690-4524

logical share of data cache by the two cores. The readdressing
of additional threads complements the logical share of data
cache by the cores.

Fig. 9. Multicore compiler vs. threads.

4.2 LIW compiler
The LIW compiler abstracts ILP from a thread and does reorder,
renaming, etc. ILP is judged by examining the conflict of data
cache access. The conflict can be detected by checking the
dependent operand of store and load instructions. Jump codes
are excluded from ILP abstraction, because they directly affect
program running. Fig. 10 shows the flowchart of the LIW
compiler. LIW1 and LIW2 are working areas for a current code
in examining code dependency.

Fig. 10. LIW compiler flow.

4.3 Evaluation
The prototyping compilers have been written in Java as shown
in Table 6. The total codes of multicore and LIW compilers are
300, respectively. By using a Java application shown in Fig. 11,
the behavior of the parallelizing compilers is exemplified. The

application is composed of two methods, each of which
summarizes 0 to 1023. Each method is made a thread by the
multicore compiler as shown in Fig. 12 (a). Fig. 12 (b) is
derived by a hand compiler. Then, Fig. 13 (a) shows the
decomposition of the first thread by the LIW compiler. Fig. 13
(b) shows the resultant form of the two threads. Although the
comparison with the hand compiler is primitive, it shows the
reasonability of the parallelizing compilers.

Table 6. Specifications of the parallelizing compilers.

Fig. 11. A test program for parallelizing compilers.

5. DISCUSSION

In order to distinguish the potential aspects of the H/S system
related to HCgorilla, the fundamental aspects of pervasive
media, current status of information security and hardware
security techniques are briefly discussed.

5.1 Pervasive Media
Table 7 surveys various aspects of pervasive media. They are
classified in discrete and streaming media. Both types are
expressed by byte structure. Discrete media is still useful in
pervasive environment. Interactive games use many
algorithmic processes for discrete data. Streaming media is
more important because most pervasive computing applications
owe to streaming media. This is further divided into two types
in view of complexity. Text data is one of streaming data,
because it is useful as refrain information in case of disaster.
Considering endless data is hard to treat by mobile devices, the
target of the HCgorilla system is discrete media and stream
data. Yet, they need sophisticated and complicated process.
Since streaming media is massive, it is reasonable to protect
their security by common key, which is preferable to protect
large quantity of byte-structured information.

5.2 Security
Table 8 surveys the current status of security techniques related
to pervasive network. The one of hardware techniques at
platforms is the public key applied to security chip, secure

yes
yes

yes

yes

yes

yes

yes

no

no
no

no
no

noStore code?

The end of code?

Store code?
Jump code?

Load code?

Jump code?

Search jump codes

Register jump codes’ address and destination address

LIW1=current byte

LIW2=current byte

Parallelize LIW1 and LIW2

LIW1=LIW2

Output LIW1

Output LIW2

Output LIW1

LIW1’s store
destination

LIW2’s store
destination=

LIW1’s store
destination

LIW1’s store
destination

LIW2’s store
destination

LIW2’s store
destination= LIW1’s store

destination
LIW2’s load
destination=

LIW1’s store
destination

LIW1’s store
destination

LIW2’s load
destination

LIW2’s load
destination=

Recover jump codes’ address and destination address

Parallelize LIW1, nop

Start

End

Multicore
compiler

LIW
compiler

Descriptive
language

No. of
codes

Input Output

Thread1,
Thread2

Java
interface

Thread Executable
code

Java

Java

300

300

public class abcde
{

void sum()
{

int i1,sum1,a1;
sum1=0;

for(i1=0;i1<1024;i1++){
sum1=sum1+i1;
a1=sum1+i1;

}
}

public static void
main(String args[])
{

int i2,sum2,a2;
sum2=0;

for(i2=0;i2<1024;i2++){
sum2=sum2+i2;
a2=sum2+i2;

}
}

}

No

No

No

Yes

Abstract threads

Renaming of data
cache address

Renaming of the
jump opcodes

Thread 2

Abstract a method
TLP analysis

Mapping onto core1/2

Start

End

Abstract a function

Is there a method?

Is there a function?

Is there a loop?

Unfold the loop

Yes

Yes

Yes

No

The end of codes?No
Yes

between instances?
Is there dependency

Multicore
compiler

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 618 ISSN: 1690-4524

coprocessor, cryptographic core, elliptic curve processor, etc.
They ensure the front-end security of pervasive computing
devices. These cutting-edge techniques are strong and effective
for digital signing. However, it is not always reasonable in
developing cipher streaming to take into account of only such
public key module-embedded processors. Since one of most
important aspect of cipher streaming is throughput, it is
necessary to develop common key module-embedded
processors. Actually, these are built in cryptography processors
for IC cards and portable electronic devices. They implement
common key ciphers as well as public key ciphers.

Compared with usual common key module-embedded
processors, the hardware cryptography in this work has
potential features. The prominent feature owes the multicore
architecture to enhance throughput with less power. The
technical feature is a byte-structured plaintext block. Since
pervasive media is also byte-structured, and the block’s length
is set wider than usual ciphers, HCgorilla provides higher
throughput. The academically new feature is the cipher
transformation by random number addressing. This simplifies
computational complexity and thus saves running time.

(a)

(b)

Fig. 12. Behavior of the multicore compiler. (a) The
prototyping. (b) The hand compiler.

(a)

(b)

Fig. 13. Behavior of the LIW compiler. (a) The prototyping. (b)

The hand compiler.

Table 7. Pervasive media.

Illegal attack such as tapping, intrusion and pretension are
another issues of network security. Since they need
complicated algorithms to detect and recognize individual
phenomena, software techniques have been mainly used.
However, they are not always sufficient from practical

35
34
33
32
31
30

B1
ED
FF
A7
3C
60

iconst_0
iload_1
istore_3
iadd
iload_1
iload_2
istore_2
iadd
iload_1
iload_2

if_icmpge

sipush

042Fiload_11B1Fiload_21C0F
1B2Eistore_13C1Eistore_23D0E
3E2Diconst_0031Diadd600D
602Cistore_23D1Ciload_11B0C
1B2Biconst_0031Biload_21C0B
1C2AreturnB11A120A
3D29FD190009
6028FF18if_icmpgeA208
1B27gotoA7170007
1C26istore_13C160406

return1225iadd6015sipush1105
0024iconst_10414iload_11B04
A223iload_11B13istore_13C03

goto0022istore_33E12iconst_00302
istore_10421iadd6011istore_23D01
iadd1120iload_11B10iconst_00300

A
dd

re
ss

1 byte

Thread1

Thread2

Address’s 1st byte

A
dd

re
ss

’s
 2

nd
by

te

Address: 26

Executable
serial code

Multicore compiler

LIW

Jump
address

Jump
destination

Address’s 1st byte

A
dd

re
ss

’s
 2

nd
by

te Thread1: multicore compiler’s output

B1
F1
FF
A7
3C

0F
0E
0D
0C
0B
0A
09
08
07
06
05
04
03
02
01
00

60
1B
1C
3D
60
1B
1C
0E
00
A2
00
04
11
1B
3D
03

60
04
1B
00
00
00
00
0E
00
A2
00
04
11
1B
3C
03

B114
F113
FF12
A711
3E10

Instruction
stream 1-1

Instruction
stream 1-2

nop

Thread 1

B1
EA
FF
A7
81
36
60
00
04
81
15
00
00

0F
0E
0D
0C
0B
0A
09
08
07
06
05
04
03
02
01
00

60
81
15
82
15
14
00
A2
00
04
11
81
15
82
36
03

00
00
00
00
00
14
00
A2
00
04
11
81
15
81
36
03

B11C
EA1B
FF1A
A719
8318
3617
6016
8115
1514
8213
1512
8211
3610

nop

Thread 2

A
dd

re
ss

Instruction
stream 1-1

Instruction
stream 1-2

A
dd

re
ss

B1
F1
FF
A7
3C

0F
0E
0D
0C
0B
0A
09
08
07
06
05
04
03
02
01
00

60
1B
1C
3D
60
1B
1C
0E
00
A2
00
04
11
1B
3D
03

60
04
1B
00
00
00
00
0E
00
A2
00
04
11
1B
3C
03

B114
F113
FF12
A711
3E10

Instruction
stream 1-1

Instruction
stream 1-2

nop

Thread 1

B1
EA
FF
A7
81
36
60
00
04
81
15
00
00

0F
0E
0D
0C
0B
0A
09
08
07
06
05
04
03
02
01
00

60
81
15
82
15
14
00
A2
00
04
11
81
15
82
36
03

00
00
00
00
00
14
00
A2
00
04
11
81
15
81
36
03

B11C
EA1B
FF1A
A719
8318
3617
6016
8115
1514
8213
1512
8211
3610

nop

Thread 2

A
dd

re
ss

Instruction
stream 1-1

Instruction
stream 1-2

A
dd

re
ss

Definition

Data
handling

Media

Size or quantity

Buffer storage

Characteristic

Security

Example

Item

Basic structure

Common key cryptography

Respectable reregister file
SIMD mode applications like signal processing,
graphic rendering, data compression, etc.

Stream data
A sequence of
similar elements

Data stream
A sequence of data, which
may be different each other

Long Endless

Stream of continuous media

Text, audio, video Seismography, tsunami, traffic

Byte string

Discrete media

Public key

Algorithmic process

Game, intelligent process

Discrete

Short

Individual data

Streaming media
Complexity

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 6 19ISSN: 1690-4524

viewpoint. The hardware implementation of IDS and IPS is our
recent result exploited independently on this work [19].

Table 8. Network and hardware security techniques.

5.3 RAC
The random number-addressing cryptography, RAC has
prospective features compared with regular block ciphers like
AES (Advanced Encryption Standard) and stream ciphers like
Vernam in view of running time, cipher strength, etc. RAC is
applicable for any byte-structured multimedia data like text,
audio, pixel, etc.

Table 9 summarizes the qualitative discussion on the
characteristics of RAC vs. regular common key cryptography.
Since quantitative measurement by using real chips and actual
processors is hard at this point, we evaluate RAC’s potential by
examining algorithmic complexity, block structure, and cipher
means.

Table 9. RAC vs. regular common key cryptography.

In view of algorithmic complexity, the dominant factor to
determine running time is the number of iterative loops. RAC
has only one iteration loop for blocks and has no iteration in
transforming each block. To be accurate, the running time of
RAC run on HCgorilla is the product of the total number of
blocks and the sum of following factors.
a. t1: the latency taken to transfer a block to the register file.
b. t2: the time of a SIMD mode cipher operation.
c. t3: latency taken to transfer a block from data cache.
On the other hand, AES has triple nesting loops. Except the 2nd
loop for rounds, the 1st loop for matrix operation and the 3rd
loop for blocks can be parallelized. The parallelism effectively
reduces running time, but inevitably causes some tradeoff.
Besides, such a discussion covering overall factors of software
and hardware is very hard. Thus, we evaluate the running time
in the case of normal condition of serial processing, and
exclude the effect of double core.

Considering the ideal strength of Vernam cipher, the cipher
strength is closely related to the key length. If an ideal buffer to
immediately store a full text was available for HCgorilla, RAC
could have the same strength as Vernam cipher. However, the
practical buffer built in HCgorilla is a register file whose space
and speed are actually limited. Yet, an adequate length register
file makes the key length long, and thus the strength of RAC is
expected to be practically strong. This exactly matches our goal
that is not to achieve perfect strength but to provide ad-hoc
encryption for pervasive devices. The strong strength of AES is
mainly due to the iteration of a series of transformations.

Fig. 14 shows forwarding the cipher text to a recipient in
cooperation with public key to safely transfer the initial key of
RNG. It is treated by hyper protection. Encrypted initial key is
a digital envelope. Decryption is similarly done by rlw.

Fig. 14. Cooperation of RAC with a public key system.

6. CONCLUSION

Parallelizing compilers for HCgorilla composed of the
multicore compiler and LIW compiler are specified to abstract
parallelism from executable serial codes or the Java interface
output and output the codes executable in parallel by HCgorilla.
The prototyping compilers are written in Java. They are
evaluated in case of an arithmetic test program. Although the
evaluation is primitive, it shows the reasonability of the
prototyping compilers compared with hand compilers.

The next step of our study will be as follows.
a. Improvement of the multicore compiler algorithm for TLP

abstraction and core allocation.
b. Improvement of the LIW compiler algorithm for the

enhancement of ILP abstraction, yield of smaller
executables by register renaming, interprocedural
optimization, procedural abstraction of repeated code
fragments.

c. Detailed evaluation of the parallelizing compilers by using
more test programs and Java benchmarks.

d. Matching the parallelizing compilers with the Java interface.
e. Installing the software support system composed of the Java

interface and the parallelizing compilers in real web servers.

7. ACKNOWLEDGEMENT

This work is partly supported by VLSI Design and Education
Center (VDEC), the University of Tokyo in collaboration with
Synopsys, Inc. and Cadence Design Systems, Inc.

Cipher Trans-
formation

Cipher means
Running

time
Cipher
strength

Needless
(random
number
addressing
only)

RAC

Vernam Short Ideally
strong

Full length

Regular

Bitwise
XOR

Block

Bitwise
XOR,
scramble,
shift, etc.DES

AES
128
bits

Medium

Strong

Stream
A few bits or a
character

Bitwise
XOR

LFSR
A5

Long

Medium

Resource
(cost)

Small

Large

Small

Large

Block

Byte

Bit

Practically
(temporary
or ad hoc)
strong

AES-
CTR

LengthString
unit

As long as a buffer
(register file’s logical
space) length

Key (random
numbers) length

64 bits

Medium

1, 1.5, 2 times
greater than the
block length in
case of AES

Original
message

SENDER

Encrypted
initial key

Encrypted
message

Initial
key

HCgorilla

PUBLIC
PUBLIC

7B15CA031BFD9
10E3E02DF63910
A0A089B43C723

Original
message

RECIPIENT

Recipient’s
private key

PRIVATE

PRIVATE

Initial key

Random
numbers

7B15CA031BFD9
10E3E02DF63910
A0A089B43C723

HCgorillaRecipient’s
public key

INTERNET

Random
numbers

RNG

RNG

Technique Secure-
ness

Running
time

Target RemarksDevice

Server

Platform

Software

Common
key
Public
key

IDS, IPS
Large Medium

Large

Sampling

Password

Inflexible for
individual
demands

Out of
account

Short Practical This workFull text

Useful for
digital signing

Internet

Mobile,
ubiquitous

Hardware

Short PracticalFull traffic
Our another
work

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 620 ISSN: 1690-4524

8. REFERENCES

[1] D. Saha and A. Mukherjee, “Pervasive Computing: A

Paradigm for the 21st Century,” Computer Magazine, Vol.
36, No. 3, 2003, pp. 25-31.

[2] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D.
Burger, S. W. Keckler, and C. Moore, “Exploiting ILP,
TLP, and DLP with the Polymorphous TRIPS
Architecture,” IEEE micro, Vol. 23, No. 6. 2003, pp. 46-
51.

[3] M. Fukase, K. Shioji, N. Imai, D. Murakami, and K. Mikuni,
“An Experiment in the Design and Development of a
Multimedia Processor for Mobile Computing,” Technical
Report of IEICE, Vol. 102, No. 400 (DSP2002-130~137),
2002, pp. 13-18.

[4] M. Fukase, Y. Nakamura, R. Akaoka, and T. Sato,
“Development of a Multimedia Mobile Processor,” Proc.
of ISCIT2004, 2004, pp. 672-677.

[5] M. Fukase, T. Oyama, and Z. Liu, “Endeavor in the Field of
Random Sampling-Designing and Prototyping a Processor
Suited for its Acceleration-,” Technical Report of IEICE,
Vol. 102, No. 272 (SDM2002-154, ICD2002-65), 2002,
pp.7-12.

[6] M. Fukase and T. Sato, “Power Conscious Endeavor in
Processors to Speed Up Random Sampling”, Proc. of
SCI2003, Vol. V, 2003, pp. 111-116.

[7] M. Fukase, H. Takeda, R. Tenma, K. Noda, Y. Sato, R.
Sato, and T. Sato, “Development of a Multimedia Stream
Cipher Engine,” Proc. of ISPACS 2006, 2006, pp. 562-565.

[8] M. Fukase, A. Fukase, Y. Sato, and T. Sato, “Cryptographic
System by a Random Addressing-Accelerated Multimedia
Mobile Processor,” Proc. of SCI2004, 2004, pp. 174-179.

[9] M. Fukase and T. Sato, “Low Energy Digital Electronics
for Multimedia Ubiquitous Environments,” Proc. of
EIC’05, 2005, pp. 409-414.

[10] M. Fukase, R. Akaoka, and T. Sato., “Hardware
Cryptography-Embedded Multimedia Mobile System,”
Proc. of WMSCI2006, 2006, pp. 225-230.

[11] M. Fukase, H. Takeda, and T. Sato, “Hardware/Software
Co-Design of a Secure Ubiquitous System,” Computer
Intelligence and Security, Springer Berlin/Heidelberg,
LNCS Vol. 4456/2007, 2007, pp. 385-395.

[12] D. Geer, “Chip Makers Turn to Multicore Processors,”
Computer Magazine, Vol. 38, No. 5, 2005, pp. 11-13.

[13] Y. Lin, C. Kozyrakis, Ali-Reza Adl-Tabatabai, “Multicore
Programming: From Threads to Transactional Memory,”
HOT Chips 18, 2006.

[14] M. Fukase, R. Egawa, T. Sato, S. Itoh, and T. Nakamura,
“Performance Evaluation of Wave-Pipelines and
Conventional Pipelines,” Technical Report of IEICE, Vol.
101, No. 386 (DSP2001-110, ICD2001-115, IE2001-94),
2001, pp. 1-8.

[15] M. Fukase, T. Sato, R. Egawa, and T. Nakamura, “Scaling
up of Wave-Pipelines,” Proc. of the Fourteenth
International Conference on VLSI Design, 2001, pp.
439-445.

[16] M. Fukase and T. Sato, “Design of a Hardware-
Cryptography-Embedded Processor for Pervasive
Computing,” Proc. of UCAS-3, 2007, pp. 15-22.

[17] M. Fukase and T. Sato, “Innovative Ubiquitous
Cryptography and Sophisticated Implementation,” Proc. of
ISCIT2006, 2006.

[18] D. S. Kochnev and A. A. Terekhov, “Surviving Java for
Mobiles,” IEEE pervasive COMP., Vol. 2, No. 2, 2003,
pp. 90-95.

[19] T. Sato, D. Miyamori, R. Sakuma, and M. Fukase,
“Power-Consumption Aware Intrusion Detection Logic for
WLAN,” Proc. of WMSCI2005, Vol. III, 2005, pp. 409-
414.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 6 21ISSN: 1690-4524

	S114BKB

