
 
 Compilation Techniques Specific for a Hardware Cryptography-Embedded 

Multimedia Mobile Processor 
 
 

Masa-aki FUKASE 
Graduate School of Science and Technology, Hirosaki University 

Hirosaki, 036-8561, Japan 
 

and 
 

Tomoaki SATO 
C&C Systems Center, Hirosaki University 

Hirosaki, 036-8561, Japan 
 
 
 

ABSTRACT 
 

The development of single chip VLSI processors is the key 
technology of ever growing pervasive computing to answer 
overall demands for usability, mobility, speed, security, etc. 
We have so far developed a hardware cryptography-embedded 
multimedia mobile processor architecture, HCgorilla. Since 
HCgorilla integrates a wide range of techniques from 
architectures to applications and languages, one-sided design 
approach is not always useful. HCgorilla needs more 
complicated strategy, that is, hardware/software (H/S) co-
design. Thus, we exploit the software support of HCgorilla 
composed of a Java interface and parallelizing compilers. They 
are assumed to be installed in servers in order to reduce the 
load and increase the performance of HCgorilla-embedded 
clients. Since compilers are the essence of software’s 
responsibility, we focus in this article on our recent results 
about the design, specifications, and prototyping of 
parallelizing compilers for HCgorilla. The parallelizing 
compilers are composed of a multicore compiler and a LIW 
compiler. They are specified to abstract parallelism from 
executable serial codes or the Java interface output and output 
the codes executable in parallel by HCgorilla. The prototyping 
compilers are written in Java. The evaluation by using an 
arithmetic test program shows the reasonability of the 
prototyping compilers compared with hand compilers. 
 
Keywords: Processor, H/S Co-Design, CMOS, Parallelizing 
Compiler, Java, Pervasive Computing, Hardware Cryptography. 
 
 

1. INTRODUCTION 
 
The emergence of pervasive computing is due to Internet 
expansion, multimedia computing, and mobile computing. 
Although this is inevitability, the expansion or diversity of 
pervasive platforms has also caused notorious security issues as 
is illustrated in Fig. 1. Facing with such circumstances in our 
daily life, we have felt alternative impressions, diversity or 
security [1]. Many ways to guarantee secureness have been 
taken, but they are time and power consuming in a word. This 
is because security techniques are mostly implemented in 
software and pervasive computing treats huge amount of 
multimedia data. The development of high performance 
application-specific and domain-specific systems is an 
innovative research of common interest [2]. In order to clear 

overall issues, the hardware integration of related techniques is 
indispensable for pervasive environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The trend and issues of pervasive computing. 
 

The development of single chip VLSI processors is the key 
technology of ever growing pervasive computing to answer 
overall demands for mobility, speed, and security in such a 
field. Thus, we have so far exploited following processors. 
a. A multimedia mobile processor named gorilla [3, 4]. 
b. A hardware cryptography-embedded processor named RAP 

(random addressing-accelerated processor) [5, 6]. The 
CMOS implementation of RAP showed its possibility for 
stream cipher [7]. 

c. The integration of gorilla and RAP into HCgorilla [8]. 
HCgorilla was implemented by using CMOS standard cell 
technologies [9]. Also, a language processing support was 
studied to reduce the load and increase the performance of 
HCgorilla [10], [11]. 
For these processors, one-sided design approach is not 

always useful, because they integrate a wide range of 
techniques from architectures to applications and languages. 
Especially, HCgorilla needs more complicated strategy, that is, 
hardware/software (H/S) co-design to cover sophisticated 
features of Java compatibility, hardware security, low power, 
and high throughput. 

Compilers are the essence of H/S co-design. Needless to 
say Proebsting’s law: a compiler advances double computing 
power every 18 years, compilers, especially paralellizing 
compilers occupy absolute position in developing sophisticated 
processors. Since compilers are most crucial for practicing 
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HCgorilla’s parallelism in pervasive environment, we focus in 
this article on our recent results about the design, specifications, 
and prototyping of parallelizing compilers for HCgorilla. The 
prototyping compilers are written in Java and evaluated in case 
of arithmetic media codes compared with a hand compiler. 
Although the evaluation is primitive, it shows the reasonability 
of the prototyping compilers. 

 
 

2. OVERVIEW OF HCGORILLA 
 
Table 1 summarizes processors we have so far developed for 
pervasive computing. The hardware cryptography-embedded 
multimedia mobile processor, HCgorilla has been developed 
considering the unification of RAP and gorilla has 
advantageous potential for downsizing, power reduction, and 
speedup. 
 

Table 1. Architectures and processor derivatives related to 
HCgorilla. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1 H/S co-design 
H/S co-design scheme is indispensable for achieving PC-like 
performance as well as pervasive computing features. 
According to this, we have designed HCgorilla. Table 2 
summarizes the strategy we have taken into account of in 
developing HCgorilla. The top priority in developing 
HCgorilla is to determine the target or application field. It 
should cover the sophisticated multimedia processing, user-
friendly mobility, and comfortable pervasive computing 
environment. As is clear from Table 2, individual strategies and 
techniques to cover these demands overlap and are closely 
related each other. Also their relations are very complicated. 

Let us discuss some of key techniques shown in Table 2. 
The power conscious highly performance of HCgorilla is due 
to a novel architecture following symmetric multicore, 
superscalar, and LIW (long instruction word) processor 
techniques. LIW is not so broad parallelism like VLIW (very 
long instruction word), yet it is effective to practically enhance 
multimedia communication that deals with large quantity of 
data in pervasive environment. 

The parallelism of multicore and LIW is very promising for 
power conscious high performance with the aid of parallelizing 
compilers. It is not always necessary to distinct multicore 
processors from multithreaded processors [12]. Although 
multithreading is not always only one software technique for 
parallelizing applications run on multicore chips [13], software 

approach is not our main concern. Thus, we take into account 
of TLP (thread level parallelism). TLP and ILP (instruction 
level parallelism) are on the back of instruction folding by API 
(application program interface) and a LIW compiler. In order to 
cover LIW in conjunction with Java native codes, 
microprogramming technique is useful. Then, the key 
technique to detect the length of each instruction and distribute 
it to appropriate pipes is superscalar-like IFU (instruction fetch 
unit). We make this by a wired logic. On the other hand, data 
level parallelism is covered by SIMD (single instruction stream 
multiple data stream) mode execution. This is indispensable for 
multimedia streaming. 

 
Table 2. H/S co-design strategy for HCgorilla. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wave-pipelining is really effective for both PC-level high 
speed and mobile-level low power dissipation [14, 15]. Also, 
wave-pipelining reduces software loads, because it is 
completely a hardware approach. Conventionally, long delay 
times have been wasted in accessing web pages and drawing 
contents. This is due to iterative process within web servers, 
network switches, and local clients to safely treat large amount 
of packets. 

Java is one of the most promising solutions for the 
functionality of attractive multimedia entertainment. In order to 
prepare real time protection of huge amount of multimedia data, 
cipher proper instructions should be added to ISA (instruction 
set architecture). What we have devised about Java are as 
follows. 
a. Compact ISA: Although complicated features demanded to 

ISA tend to increase it, compactness is also important in 
order to lighten the burden on hardware design. This is 
solved by the format of code and the number of codes. 

b. Platform-friendly language processing: Due to an 
intermediate form or class file produced by Java compilers, 
Java is more awkward than regular languages. Since 
pervasive clients use small scale systems, we make large 
servers cover the preprocessing of complicated class files 
by API and compilers. 

c. Direct execution of Java bytecode without JVM (Java virtual 
machine): Although preprocessed class files are further 
interpreted by JVM or JIT (just-in-time compiler) built-in 
runtime systems, they need more ROM space. This 
degrades response time, power consciousness, usability, 
cost, and performance of mobile devices. Considering 
hardware property as well as Java compatibility, we apply 
the interpreter type Java CPU. 
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2.2 Hardware organization 
Fig. 2 shows the architecture of HCgorilla. Fig. 2 (a) illustrates 
the hardware parallelism of double core and multiple pipelines. 
Each core is composed of Java compatible two media pipes and 
a cipher pipe. These pipes share the instruction fetch, opcode 
fetch, decode, data cache access, and write back stages. In spite 
of three pipes, instruction cache is made issue two executable 
codes in parallel. This is enough even for fully parallel 
execution. This is because SIMD mode cipher streaming does 
not need the instruction fetch stage in the steady state of 
streaming, and executes the streaming by repeating the later 
four stages. The wired logic instruction fetch stage detects the 
length of each instruction and distributes it to appropriate pipes. 

Media pipes have the stack access and execute stages. 
Since the media pipe is a devised interpreter type Java CPU, 
operands are issued from stacks to the execute stages similar to 
JVM. The cipher pipe has RNG (random number generator) 
and register file access stages. The buffer of cipher streaming is 
provided with a register file. Each pipe is partly wave-pipelined 
for the power conscious high speed processing. Fig. 2 (b) 
shows the latest derivative of HCgorilla.2 more in detail [16]. 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Fig. 2. The architecture of HCgorilla. (a) Parallelism. (b) Detail 

of the latest derivative. 
 
2.3 Cipher process 
Since the cipher pipe is originally dedicated to HCgorilla, let us 
describe it more in detail. The cipher pipe enables non-
traditional cryptographic streaming due to the extremely long 
cycle of random numbers. These are easily produced by 
making RNG with LFSR (linear feedback shift register). LFSR 
falling into the category of M-sequence requires trivial 
additional chip area and power dissipation. A tiny n-bit LFSR 
produces the huge n-th power of 2 random numbers. The built-
in RNG is directly connected to the address line of data cache. 
Due to the direct connection, the content of a specified register 
file location is transferred to data cache addressed by the RNG 

output. The transfer rate is several bytes per clock depending 
on the width of the register file and data cache. The register file 
plays the role of a pseudo-streaming buffer. 

In order to save hardware resources, the register file for 
buffering and data cache for destination operands are 
physically shared by the cores. Although they are physically 
shared, it is logically divided by using quasi 2-port I/O for the 
single memory space. The physical share means that the cores 
do not have their own memories but use a single memory space 
in common. In order to mutually use the single space, their 
addressing is not monotonous or logically divided. This is 
made by automatically or hardwarily biasing addresses to be 
distinguished. This is equivalent to have quasi 2-port I/O. 

The SIMD mode execution by the cipher pipe is due to the 
two executable codes, that is, a random store code rsw and a 
random load code rlw. These are dedicated to simple and fast 
cryptographic streaming. Fig. 3 illustrates an internal behavior 
in executing rsw for the encryption of a byte string like text, 
image, etc. Cryptographic streaming is the continuous 
encryption or decryption of such data. Here, d1d2d3d4d5 
exemplifies a plaintext block. 30241 is corresponding key or 
RNG outputs. d2d5d3d1d4 is a resultant encrypted block. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Execution of the SIMD mode cipher code rsw. 
 

In the execution of rsw, the block and RNG’s output are 
synchronized according their sequence. For example, the first 
byte data “d1” and the first random number “3” are 
synchronized and stored to the 3rd location of the data cache. 
The sequence of random addressing store like this results in the 
formation of an encrypted block in the data cache. Then, the 
encrypted block is forwarded to the recipient and decrypted 
similarly by rlw. 

The common key process by using rsw and rlw is called 
RAC (random number-addressing cryptography) [17]. Note 
that random numbers themselves are not exchanged between 
the sender and recipient. The initial value of RNG is crucial for 
RAC and it should be treated by hyper protection. Practically, 
public key is promising for communication between a sender 
and a recipient, though it is no account in this study. 

The block length and the size of the register file and data 
cache are specified as follows. 

Block length ≤ n-bit LFSR’s output length (2n) 
= register file’s logical space size 
= data cache’s logical space size. 

Here, the size is the product of length and width (byte). The 
logical space is the half size of a physical space as shown in 
Fig. 2 (b). The block length, register file size, and data cache 
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size crucially influence the performance and security, assuming 
the processing of one block per clock. 

 
 

3. SOFTWARE ASPECTS 
 
Various aspects related to the software system of HCgorilla, 
except compiler techniques, are concentrated in this chapter. 
 
3.1 Software Support System 
Usual Java language systems have needed rather complicated 
language processing and hardware organization in order to 
achieve the platform neutrality. This is due to an intermediate 
form or class file produced by using the Java compiler. 
Although the class file contains many kinds of information, the 
essence is Java byte codes, and the remaining is additional 
information. This is really convenient for JVM, but secondary 
for a processor itself. Yet, the complicated language processing 
is imposed on platforms in general. 

Since HCgorilla is a devised interpreter type Java CPU 
without JVM, HCgorilla also needs the software support to 
adjust class files and executable codes. The software support 
includes Java interface and parallelizing compilers as shown in 
Fig. 4. The software support best maps software threads onto 
instruction cache. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Language process flow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Software support for HCgorilla.  
 

In order to release smaller platforms from heavy duties for 
Java language processing, we are planning to install the 
software support in larger servers. This is also effective to 
increase the performance of client platforms. Fig. 5 exemplifies 
a load-balancing network system. The network is composed of 
servers, Internet, and HCgorilla systems. Then, an HCgorilla 
system is formed by a mobile client embedded with an 
HCgorilla chip and software support. 
 
3.2 Executable Code Set 
Table 3 summarizes the code set of HCgorilla.2 composed of 
the two cipher codes and 61 Java compatible media codes. 
These are carefully selected from the 202 Java bytecodes for 
ever growing usage of Java in mobile fields [18].  
 

Table 3. Code set of HCgorilla.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 shows the assembler/executable code format of 
HCgorilla. The code format of JVM is added for comparison. 
While a so-called instruction is formed by an opcode and an 
operand, they are grammatically independent in case of 
HCgorilla and JVM. Because the concept of the machine 
instruction is vague as shown in Fig. 6, we do not say 
instruction set but code set in this study. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  Code format of HCgorilla. 
 

The opcode of HCgorilla is a media or cipher code. The 
media codes are the subset of JVM. They operate for operand, 
stack, and data cache. A media code refers operands stored just 
after the opcode in instruction cache. The number of 1-byte 
operands related to a media code is variable between 0 and 2. 
Cipher codes function between register file and data cache. 
Cipher codes are SIMD mode to do streaming for multimedia 
data stored in register file. Cipher codes do not attach operands, 
but get cipher data from register file. 
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The policy of length variant reduced codes achieves the 
compactness of HCgorilla’s code set. The length of an opcode 
and its related operands is made variable within instruction 
cache, which is effective to optimize cache size. The scheme of 
dense codes at instruction cache is also effective to reduce 
critical path delay and power dissipation. The compact scheme 
of HCgorilla is not similar to ARM’s optimization scheme for 
encoding density. While the encoding density of ARM’ ISA is 
simply concerned with the bit density of executable codes, 
dense codes at instruction cache referred to HCgorilla aim to 
pack executable codes as many as possible without increasing 
cache size. The compact code scheme is more preferable in 
view of mobility. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Language process flow specific for HCgorilla. 
 

Table 4. The target of API and the LIW compiler. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
3.3 Language processing 
Fig. 7 abstracts language process flow specific for HCgorilla. 
Table 4 summarizes the target codes of API and the LIW 
compiler. Fig. 8 summarizes the Java interface flow specific for 

HCgorilla. The Java interface plays as API, and is composed of 
two components. The one abstracts Java bytecodes from a class 
file. The other unfolds Java bytecodes not defined by 
HCgorilla’s code set. Since the output is still serial codes, it 
needs parallelizing compilers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Java interface. 
 
 

4. COMPILATION TECHNIQUES 
 
As shown in Figs. 4 and 5, HCgorilla’s compilers are specified 
as follows. 
a. To abstract parallelism from the Java interface output or 

executable serial codes. 
b. To readdress codes newly produced by parallelization to 

avoid the conflict of data cache access. 
c. To output the codes executable in parallel by HCgorilla. 
d. To map parallel executable codes on instruction cache within 

a core. In mapping, jump codes are renamed by modifying 
their destination addresses. 

In order to respond these steps, HCgorilla’s compilers are 
composed of the multicore compiler and LIW compiler. 
 
4.1 Multicore compiler 
Table 5 summarizes threads of Java applications. They appear 
at various levels. Threads at source code level are abstracted by 
API. The target of this study is the abstraction of threads at 
executable level. This is covered by the multicore compiler. Fig. 
9 shows the current status of the multicore compiler. 
 

Table 5. Various threads of Java applications. 
 
 
 
 
 
 
 
 
 
 
 
 

TLP at executable level is judged by looking for return 
process that expresses the end of instructions sequence or 
thread. The multicore compiler does not readdress the second 
thread needed to avoid the conflict of data cache access with 
the first thread. The readdressing is covered by the hardwarily 
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logical share of data cache by the two cores. The readdressing 
of additional threads complements the logical share of data 
cache by the cores. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Multicore compiler vs. threads. 
 

4.2 LIW compiler 
The LIW compiler abstracts ILP from a thread and does reorder, 
renaming, etc. ILP is judged by examining the conflict of data 
cache access. The conflict can be detected by checking the 
dependent operand of store and load instructions. Jump codes 
are excluded from ILP abstraction, because they directly affect 
program running. Fig. 10 shows the flowchart of the LIW 
compiler. LIW1 and LIW2 are working areas for a current code 
in examining code dependency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. LIW compiler flow. 
 

4.3 Evaluation 
The prototyping compilers have been written in Java as shown 
in Table 6. The total codes of multicore and LIW compilers are 
300, respectively. By using a Java application shown in Fig. 11, 
the behavior of the parallelizing compilers is exemplified. The 

application is composed of two methods, each of which 
summarizes 0 to 1023. Each method is made a thread by the 
multicore compiler as shown in Fig. 12 (a). Fig. 12 (b) is 
derived by a hand compiler. Then, Fig. 13 (a) shows the 
decomposition of the first thread by the LIW compiler. Fig. 13 
(b) shows the resultant form of the two threads. Although the 
comparison with the hand compiler is primitive, it shows the 
reasonability of the parallelizing compilers. 
 

Table 6. Specifications of the parallelizing compilers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. A test program for parallelizing compilers. 
 
 

5. DISCUSSION 
 
In order to distinguish the potential aspects of the H/S system 
related to HCgorilla, the fundamental aspects of pervasive 
media, current status of information security and hardware 
security techniques are briefly discussed. 
 
5.1 Pervasive Media 
Table 7 surveys various aspects of pervasive media. They are 
classified in discrete and streaming media. Both types are 
expressed by byte structure. Discrete media is still useful in 
pervasive environment. Interactive games use many 
algorithmic processes for discrete data. Streaming media is 
more important because most pervasive computing applications 
owe to streaming media. This is further divided into two types 
in view of complexity. Text data is one of streaming data, 
because it is useful as refrain information in case of disaster. 
Considering endless data is hard to treat by mobile devices, the 
target of the HCgorilla system is discrete media and stream 
data. Yet, they need sophisticated and complicated process. 
Since streaming media is massive, it is reasonable to protect 
their security by common key, which is preferable to protect 
large quantity of byte-structured information. 
 
5.2 Security 
Table 8 surveys the current status of security techniques related 
to pervasive network. The one of hardware techniques at 
platforms is the public key applied to security chip, secure 
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coprocessor, cryptographic core, elliptic curve processor, etc. 
They ensure the front-end security of pervasive computing 
devices. These cutting-edge techniques are strong and effective 
for digital signing. However, it is not always reasonable in 
developing cipher streaming to take into account of only such 
public key module-embedded processors. Since one of most 
important aspect of cipher streaming is throughput, it is 
necessary to develop common key module-embedded 
processors. Actually, these are built in cryptography processors 
for IC cards and portable electronic devices. They implement 
common key ciphers as well as public key ciphers. 

Compared with usual common key module-embedded 
processors, the hardware cryptography in this work has 
potential features. The prominent feature owes the multicore 
architecture to enhance throughput with less power. The 
technical feature is a byte-structured plaintext block. Since 
pervasive media is also byte-structured, and the block’s length 
is set wider than usual ciphers, HCgorilla provides higher 
throughput. The academically new feature is the cipher 
transformation by random number addressing. This simplifies 
computational complexity and thus saves running time. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Fig. 12. Behavior of the multicore compiler. (a) The 
prototyping. (b) The hand compiler. 
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Fig. 13. Behavior of the LIW compiler. (a) The prototyping. (b) 

The hand compiler. 
 

Table 7. Pervasive media. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Illegal attack such as tapping, intrusion and pretension are 
another issues of network security. Since they need 
complicated algorithms to detect and recognize individual 
phenomena, software techniques have been mainly used. 
However, they are not always sufficient from practical 
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viewpoint. The hardware implementation of IDS and IPS is our 
recent result exploited independently on this work [19]. 
 

Table 8. Network and hardware security techniques. 
 
 
 
 
 
 
 
 
 
 
 
5.3 RAC 
The random number-addressing cryptography, RAC has 
prospective features compared with regular block ciphers like 
AES (Advanced Encryption Standard) and stream ciphers like 
Vernam in view of running time, cipher strength, etc. RAC is 
applicable for any byte-structured multimedia data like text, 
audio, pixel, etc. 

Table 9 summarizes the qualitative discussion on the 
characteristics of RAC vs. regular common key cryptography. 
Since quantitative measurement by using real chips and actual 
processors is hard at this point, we evaluate RAC’s potential by 
examining algorithmic complexity, block structure, and cipher 
means. 

 
Table 9. RAC vs. regular common key cryptography. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In view of algorithmic complexity, the dominant factor to 
determine running time is the number of iterative loops. RAC 
has only one iteration loop for blocks and has no iteration in 
transforming each block. To be accurate, the running time of 
RAC run on HCgorilla is the product of the total number of 
blocks and the sum of following factors. 
a. t1: the latency taken to transfer a block to the register file. 
b. t2: the time of a SIMD mode cipher operation. 
c. t3: latency taken to transfer a block from data cache. 
On the other hand, AES has triple nesting loops. Except the 2nd 
loop for rounds, the 1st loop for matrix operation and the 3rd 
loop for blocks can be parallelized. The parallelism effectively 
reduces running time, but inevitably causes some tradeoff. 
Besides, such a discussion covering overall factors of software 
and hardware is very hard. Thus, we evaluate the running time 
in the case of normal condition of serial processing, and 
exclude the effect of double core. 

Considering the ideal strength of Vernam cipher, the cipher 
strength is closely related to the key length. If an ideal buffer to 
immediately store a full text was available for HCgorilla, RAC 
could have the same strength as Vernam cipher. However, the 
practical buffer built in HCgorilla is a register file whose space 
and speed are actually limited. Yet, an adequate length register 
file makes the key length long, and thus the strength of RAC is 
expected to be practically strong. This exactly matches our goal 
that is not to achieve perfect strength but to provide ad-hoc 
encryption for pervasive devices. The strong strength of AES is 
mainly due to the iteration of a series of transformations. 

Fig. 14 shows forwarding the cipher text to a recipient in 
cooperation with public key to safely transfer the initial key of 
RNG. It is treated by hyper protection. Encrypted initial key is 
a digital envelope. Decryption is similarly done by rlw. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Cooperation of RAC with a public key system. 
 
 

6. CONCLUSION 
 
Parallelizing compilers for HCgorilla composed of the 
multicore compiler and LIW compiler are specified to abstract 
parallelism from executable serial codes or the Java interface 
output and output the codes executable in parallel by HCgorilla. 
The prototyping compilers are written in Java. They are 
evaluated in case of an arithmetic test program. Although the 
evaluation is primitive, it shows the reasonability of the 
prototyping compilers compared with hand compilers. 

The next step of our study will be as follows. 
a. Improvement of the multicore compiler algorithm for TLP 

abstraction and core allocation. 
b. Improvement of the LIW compiler algorithm for the 

enhancement of ILP abstraction, yield of smaller 
executables by register renaming, interprocedural 
optimization, procedural abstraction of repeated code 
fragments. 

c. Detailed evaluation of the parallelizing compilers by using 
more test programs and Java benchmarks. 

d. Matching the parallelizing compilers with the Java interface. 
e. Installing the software support system composed of the Java 

interface and the parallelizing compilers in real web servers. 
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