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ABSTRACT

Under perfect synchronisation conditions, watermark-
ing schemes employing asymmetric spread-spectrum tech-
niques are suitable for copy-protection of audio signals. This
paper proposes to combine the use of a robust psychoacous-
tic projection for the extraction of a watermark feature vec-
tor along with non-linear detection functions optimised with
side-information. The new proposed scheme benefits from
an increased level of security through the use of asymmet-
ric detectors. We apply this scheme to real audio signals
and experimental results show an increased robustness to
desynchronisation attacks such as random cropping.

1. INTRODUCTION

The widespread adoption of broadband networks such as the
Internet has rendered it economically feasible to distribute
high-quality multimedia documents by electronic means
without loss of quality. In this context, piracy and illicit dis-
semination has increased dramatically, threatening owner-
ship and authors’ rights. Digital watermarking is being con-
sidered as a promising technique in copy-control systems
complementing cryptographic tools in the role of ‘last-line
of defense’. Most schemes proposed to date employ spread-
spectrum techniques that can often be defeated by applying
such malicious attacks as described in [1]. One very ef-
ficient, yet relatively simple attack consists of desynchro-
nising the watermark detector by performing some random
cropping, linear shifting or time warping imperceptible to
the Human Auditory System (HAS).

In this paper, we propose the use of a robust psychoa-
coustic projection for the extraction of a feature vector as
a means of synchronisation, along with an asymmetric de-
tection scheme based onnth-order polynomial forms using
a side-informed method that has been shown to exhibit a
higher level of security and better performance [2–4]. Com-
puter simulations carried out over a large set of real audio
data are used to evaluate the performance of the proposed
scheme.

2. SPREAD-SPECTRUM WATERMARKING

Spread-spectrum watermarking (SSW) is commonly
used to achieve blind detection. In most symmetric schemes,
a watermarkw is mixed with the original signal to produce
the watermarked signal. Detection relies on applying an hy-
pothesis test to the result of a correlation of the received
signal withw. Recently, increased robustness to collusion
attacks was obtained with a number of asymmetric schemes
of quadratic form as reported in [5]. However, security now
relies on a secret permutation and, therefore, such schemes
are more vulnerable to desynchronisation attacks. In [6],
side-information was used to inform the watermark result-
ing in a large performance improvement.

2.1. Theoretical Framework

Given the original contentX0, an N -dimensional feature
vector r0 is extracted using an extraction function:
e(X0, k) = r0, wherek is a secret key. The extraction
process is invertible in the sense that there is an associated
embedding process m(X, r) such that
m(X, e(X, k)) = X. A central random watermark signal
w, normalised to unit power, is then modulated onr using a
mixing function which can be assumed, without loss of gen-
erality, to be additive:F (r0, gw) = r0 +gw. The resulting
watermarked feature vectorrw is embedded back into the
original content through the embedding processm(.). In
this section and for simplicity, the embedding strength is
considered to be given by the constant scalarg.

Detection of the watermark from a received content pro-
ceeds by extracting an unknown feature vectorr using ex-
traction functione(.), and testing the output of the detection
functiond(r) under the null hypothesis,H0, that no water-
mark is present, and the alternative,H1, that a watermark is
present. Generally, a threshold,thr , is set for a given prob-
ability of false alarm,Pfa = P{d(r) > thr |H0}, and the
power of the test,Pp = P{d(r) > thr |H1}, is measured.
Finally, the efficiency (also called deflection coefficient) for
the scheme is defined as:

ed(r) =
E{d(r)|H1} − E{d(r)|H0}√

V {d(r)|H1}
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whereV {.} andE{.} denote the variance and the expecta-
tion.

2.2. nth-Order Side-Informed Watermarking

In [3, 4], a renewed approach to watermarking was proposed
by exploiting side-information at the embedder to maximise
the detection power, and by using non-linear polynomial
functions ofnth-order form ford(r). Indeed, to first order
and for small embedding strengths, the detection function
can be written as:

d(r0 + gw) ' d(r0) + gwT∇d(r0)

Side-information is then used to maximise the detec-
tion power by choosing the watermarkw ∝ ∇d(r). As-
suming that the detection functiond(r) is chosen such that
E{d(r)|H0} = 0, then the expected value of the detector
under hypothesisH1, that the watermark is present, is given
to the first order by

E{d(r)|H1} = g

N∑

i=1

√√√√E

{(
∂d(r)
∂ri

)2
}

.

In [3, 4], two families of detectors were proposed, namely
JANIS and POWER-n. These have the best efficiency re-
ported to date and are based on the following two polyno-
mial functions of degreen:

JANIS : d(r) =
N/n∑

i=1

n∏

j=1

rij (1)

POWER-n : d(r) =
N/2∑

i=1

rn−1
i rj (2)

wherej for POWER-n is a randomly chosen index, which
is matched with each indexi. To first order, it was shown
that the efficiency of a JANIS detector, for normally dis-
tributed components ofr, is

√
nNG, a factor of

√
n bet-

ter than SSW, whereG = σ2
r0

/g2. The efficiency of a
POWER-n detector also depends on the distribution of the
componentsri. In particular, if the components ofr are
uniformly distributed, then POWER-n outperforms JANIS,
with a first order efficiency ofn

√
NG/6. Such large ef-

ficiency values can be traded-off against lower probability
of false alarm, increased robustness to noise and/or lower
embedding strengths.

2.3. Feature Vector Choice

As we described in the previous sections, the extraction
function e(.) provides the vectorr0 on which the water-
mark signal is embedded. The choice of the feature vector
r0 is of great importance for the watermarking scheme as

robustness, security, and capacity are directly linked to it.
In the context of copy-protection, very low capacities are
allowed as the goal of the detection is to determine the pres-
ence of the watermark, as opposed to a message carried by
the watermark signal. A limit of one detection per 10 sec-
onds of normally sampled audio (44100Hz) is common. On
the other hand, security and robustness are crucial for the
scheme. The asymmetric aspect of the scheme provides in
itself good security: the detection is achieved without the
watermark signal, and any brute attack attempting to sub-
tract the watermark is almost impossible. Thus, our main
concern is now the robustness to different types of attack,
and in this context we use the following feature vector ex-
traction method.

A fourier transform of length 1024 (size of oneframe)
is applied to the time-domain audio samples. The frequency
values are mapped into 25critical bands, corresponding to
frequency bands with similar auditory and masking proper-
ties of the HAS. One component ofr is extracted from each
critical bandcb and calculated as,

rcb =
1
M

∑

i∈cb

log10 |fi|, (3)

whereM is the number of frequencies in the critical band.
Using this extraction method, N/25 frames are required to
extract a vector of length N. The vectorr is finally obtained
by filtering the extracted vector through a periodic function
similar to that of quantisation process and which bounds its
energy.

An interesting consequence of this extraction method is
the psychoacoustic features of the scheme. Using the crit-
ical band method, we weight the watermark power accord-
ing to the HAS, providing imperceptibility of the watermark
presence. Secondly, since the watermark is duplicated on
all frequencies in the critical band, there is some built-in ro-
bustness to desyncronisation, which is the main concern in
this paper. We will see in section 5 that this feature vector
choice provides a natural robustness to light desynchronisa-
tion, or imperfect synchronisation.

3. SYNCHRONISATION IN WATERMARKING

Desynchronisation attacks were first used in image water-
marking with global affine transformations. In [7], Kutteret
al proposed a method using sliding-correlation to estimate
the translation and rotation parameters of a watermark pat-
tern embedded in different known locations. The scheme
was later defeated using random warping along with affine
desynchronisation. In [8], Hartunget al approximated a
global random distortion by a local affine transformation.
In [9], Voloshynoskiyet alcombined both methods and pro-
posed a referenced watermark embedding at a local level.
Although good results can be obtained with such techniques,
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there are computationally very intensive and drastically in-
crease the probability of false alarm.

In audio watermarking, a desynchronisation attack is
usually some mapping function applied in the time-domain
that can be classified as time-shift, linear time-scaling, ran-
dom cropping, and non-linear time-scale modification (also
referred to as warping [10]). In [11, 12], Malvaret al and
Tachibanaet al proposed methods to embed a watermark
in the time-frequency plane of audio signals using a two-
dimensional secret pseudo-random array. Repetition of the
watermark pattern is used along with a sliding-correlator to
achieve robustness against time and frequency desynchroni-
sation. Besides the disadvantages associated with symmet-
ric detection, these methods require an exhaustive search
leading to large probability of false alarm. Moreover, they
were defeated using a simple removal attack by exploiting
the embedding redundancy and estimating the watermark
locations and pattern. In [10], Eggerset al used a quantisa-
tion index modulation scheme to embed a pilot sequence in
the time domain, and estimate the desynchronisation using
a Viterbi tree search. Unfortunately, the complexity of such
algorithms is known to increase rapidly with the dimension
of the search space, and good performance of the technique
is restricted to relatively smooth warping of the signal, well
below the perception threshold of the HAS.

The HAS is very sensitive to distortion and impercepti-
ble audio watermarking is generally achieved by shaping the
watermark signal in the frequency domain using a fine psy-
choacoustic analysis of the original signal. In SSW the de-
tection is commonly achieved by using vectors of frequency
magnitudes. These vectors are usually obtained from FFT
windows over the time-domain (a FFT window is the Fast
Fourier Transform calculated over one frame of the audio
sample). To ensure accurate detection, it is essential that
the same FFT windows are chosen by the detection process
as were chosen by the embedding process. The means of
choosing the FFT windows along the signal is then an issue
when a desynchronisation attack is carried out. Recently,
Wu et al [13] and Kirovskiet al [14] proposed a new type
of synchronisation technique that relies on the extraction of
robust features from the audio signal, such as beats or en-
ergy spikes, in order to locate the embedded information.
This reduces, if not eliminates, the use of sliding-correlation
in the detector. In this work, we propose to further develop
these methods and combine them with very efficient detec-
tion schemes so as to provide increased security and robust-
ness to a wide range of time-scale modifications.

Contrary to most watermarking schemes that take into
account the problem of desyncronisation attacks, we have
chosen to implement an asymmetric scheme in the sense
that the watermark signal is not required at the detector.
This important feature makes this scheme suitable for copy-
protection applications.

4. FEATURE VECTOR EXTRACTION USING
ROBUST PSYCHOACOUSTIC PROJECTION

A nth-order side-informed watermarking scheme can be eas-
ily defeated by ensuring that the components ofr are paired
off incorrectly using a desynchronisation attack. This can
be circumvented by using an extraction functione(.) which
uses robust psychoacoustic features of the host signal, re-
ferred to as robust salient points, to locate the extracted vec-
tor r.

4.1. Use of Robust Salient Points

A simple way to view a desynchronisation attack is that the
detector “doesn’t look” at the right location in the studied
signal. A solution to this problem is to devise a way of
knowing the position used for the watermark embedding,
and then to be able to trace these positions if they have been
moved by a desynchronisation attack. In this context, salient
points can be used as mobile reference points in the signal.

Wu et al in [13] applied the concept of salient points
to audio signal. In audio, peaks of energy are generally
considered good salient points. Kalkeret al in [15] used
a similar idea, the so-called “hashing for content identifica-
tion”, in which they extract certain features of the signal that
make it uniquely identifiable. Although the basic ideas are
similar, we require that a desynchronisation attack would
be reflected on the position of our salient points (the ability
to cope with temporal transformations). As such, the defini-
tion of our salient points will have to be done in the time do-
main, detailed in section 4.3, whereas Kalkeret al had the
freedom to choose salient points by looking at the different
characteristics of different domains, such as the frequency
domain.

The psychoacoustic projection can be considered as a
projection from the signal space to the embedding space.
The dimension of the obtained embedding space is much
smaller then the initial signal space, and therefore decreases
dramatically the potential searches for the watermark.

4.2. Robust Salient Point Properties

It is the robustness to distortion of salient points that makes
them ideally suited for this application as the points cho-
sen at the embedding stage must be chosen again at the
detection stage, even in the case of an attack. Hence, the
psychoacoustic extraction must resist all the potential wa-
termark attacks such as AWGN (Additive White Gaussian
Noise), compression, filtering, resampling, etc. Another
more specific attack might attempt to remove the salient
points themselves. Faced with these different types of at-
tacks, the salient points are chosen in sensitive regions so
that they are not easily removed. Sensitive regions are gen-
erally areas of high energy of the signal, and carry mean-
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ingful information according to the HAS. Consequently, re-
moving such points would significantly degrade the quality
of the signal. The definition of salient point regions is de-
tailed in section 4.3.

Recently, in [14], Kirovski used periodic beats as salient
points. However this approach is not applicable to many
audio signals such as speech or jazz. In developing our ex-
traction function, we have been mindful in ensuring that it
is not signal dependent.

4.3. Psychoacoustic Projection Insight

In this section we describe the practical functioning of the
psychoacoustic projection. Section 5.1 illustrates, with ex-
perimental results, the quality of the salient point extraction
method.

The audio signals is split intoN macro-windows Typ-
ically the size of a macro-window varies between 5 and 15
frames where a frame is of length 1024 samples from an
audio file sampled at 44100Hz. The salient point extraction
function is applied over each macro-windowmi (i ∈[1,N])
and a set of salient points{φj} is returned. From{φj}, one
salient pointφp is selectively chosen. The embedding of the
watermark is done with respect toφp, by using the frame
[φp+1, φp+1024] to contribute components to the vectorr.
Recall that one frame of the signal gives 25r components;
the vectorr is therefore built from many salient points. Con-
sequently, if a salient point is incorrectly identified at detec-
tion, it will only minimally affect the detector decision as a
whole.

A more detailed description of the salient point extrac-
tion function follows. The extraction function considers
each sample,n, of the macro-window and computes three
associated values for each of these:ξ1(n), ξ2(n), andρ(n).
ξ1(n) andξ2(n) are defined as a measure of the energy ofη
samples before and after the pointn:

ξ1(n) =
n∑

k=n−η+1

s(k)2, ξ2(n) =
n+η∑

k=n+1

s(k)2

The complexity of this computation is reduced toO(n)
by calculatingξ(n) as a function ofξ(n− 1).

The ratioρ is then defined as:

ρ(n) =
ξ2(n)
ξ1(n)

.

The salient point extraction function selects points from
the audio signal that are of both a high energy area and a
high energy variation area. To do so,ξ2(n) andρ(n) are
compared respectively to two thresholdsTh1 , the energy
threshold, andTh2 , the ratio threshold. If both tests are

successful, the sample position is kept as a potential can-
didate salient point. In practice, we observed that potential
candidates were organised in groups of consecutive sample
points. So as to achieve greater stability for salient points,
we then introduced a third thresholdTh3 which defines the
minimum number of consecutive potential candidate points
proceeding the candidate point under consideration. If this
test is also successful, the position of the candidate sample
point, n, is recorded as a salient point. Finally, a list of
salient points is obtained for each macro-window, and from
this list, one salient point is selectively chosen as the po-
sition for the watermark embedding. The criteria used in
choosing the salient pointφp from the set{φj} allows us to
introduce an additional level of security.

There are a number of issues relating to the choice of
the thresholdsTh1 , Th2 andTh3 . If these thresholds are
set too high for the sample of audio being examined, no
salient points may be found, in which case the embedding
position will be a predefined default position known to the
embedder and the detector. However, this default position
has a much higher probability of failing after a desynchro-
nisation attack. Conversely, if the thresholds are set too low,
the number of salient points will be high with a greater risk
of vulnerability to attacks, and a greater probability of er-
ror in the selection ofφp from {φj}. In future works, we
will propose a systematic approach based on a statistical
pre-processing of the audio sample in order to set optimised
values for the thresholds. In section 5 the results are ob-
tained with values forTh1 , Th2 andTh3 which provide an
average of 10 salient points per macro-window.

4.4. Conclusion

The psychoacoustic projection dramatically reduces the size
of the extraction/embedding space, and therefore minimizes
the problem of the large exhaustive searches encountered
in [11, 12].

The detection of the watermark relies on the ability to
trace the displacement of the salient points caused by the
desynchronisation attack.

5. EXPERIMENTAL RESULTS

This section presents experimental results carried out on
real audio samples. A set of over 400wav files, each 30
seconds long and sampled at 44100Hz, containing music
from different artists and genres. The signal to watermark
ratio (SWR) is set to 23dB for all the simulations, which
ensures inaudibility of the watermark presence.
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5.1. Impact of Imperfect Synchronisation onnth -order
detectors

In order to define the required effectiveness of the psychoa-
coustic projection at retrieving salient points, we first need
to evaluate the impact of imperfect synchronisation on our
nth order decoders. In practice, it is not possible for the
extraction of the salient points to be exact and therefore a
predefined level of approximation must be tolerated.

In the following simulation we recorded the set of salient
point positions used at the embeddingUembedding, and we
then added a “jitter”jit to them in order to obtain the posi-
tion of the salient points used at the detectionUdetection:

Udetection = Uembedding + jit

wherejit is a vector of integers uniformly distributed, with
mean equal to zero, and spread over the interval [-ν ; ν], ν
being the tolerance factor.

Fig.1 shows that, for a value ofν up to 50, the pdfs
(probability density functions) of the correlation results un-
der hypothesisH0 and H1, see section 2.1, are still suf-
ficiently separated. This is explained by the fact that the
watermarking scheme uses a frequency embedding that is
spread widely and therefore benefits from the invariance by
translation of the magnitude of the Fourier coefficient. This
trait is essential for the use of the psychoacoustic extraction
as it allows a tolerance to imperfect synchronisation.

The value ofν=50 corresponds to a significant loss of
efficiency, even though still viable. We will set the toler-
ance factorν at a lower level for better watermark detection
by evaluating the performances of the projection according
to the following rule: the position of the retrieved salient
points must not differ from the original salient point posi-
tions by more than 20 samples.
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Fig 1.a: Correlation distributions with perfect synchronisation
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Fig 1.b: Correlation distributions for imperfect synchronisation: ν = 50
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Fig. 1. Effect of imperfect synchronisation.

5.2. Robust Psychoacoustic Projection Performances

In this section we examine the performances of the psychoa-
coustic model in environments with a high level of noise.
The attack used to test the accuracy of the projection is the
classic AWGN attack. The range of the signal to noise ra-
tio (SNR) used to illustrate the performances of the projec-
tion is from 50 dB to 10 dB. Audibility tests of such an at-
tack have been conducted and all lab members agreed to set
40 dB as the threshold beyond which the noise addition is
clearly audible. Fig.2 shows that the psychoacoustic projec-
tion performs well, even beyond the audibility threshold of
40 dB. Two tolerance factors, see section 5.1, are depicted,
demonstrating a greater precision on the accuracy of the ex-
traction function. Salient points are considered correct if
their retrieved position differs from their original position
by less thenν samples.

This experiment has been carried out on a set of 400 au-
dio files which corresponds to the extraction of over 120000
salient points. For a noise addition corresponding to40
dB, the limit of the audibility of the attack, 99.4% of the
salient points are correctly retrieved for both tolerances. For
a noise level of 23 dB below the signal, which considerable
degrades the signal, 91.7% of the salient point positions re-
trieved are distant from their initial position by less the 4
samples, and 94% by less than 20 samples.
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Fig. 2. Robustness of salient points.

5.3. Improvements to Desynchronisation Attacks

This last section shows the improvement of the complete
watermarking scheme thanks to the psychoacoustic projec-
tion. Two types of desynchronisation attacks are considered
here: random time-shift and random cropping. The random
cropping is acknowledged by the watermarking community
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as a major synchronisation issue. The first two sets of sim-
ulations in this section has been carried out with a4th order
decoder. Finally, the ROC (Receiver Operating Character-
istics) curve is given for2nd, and4th orders.

Fig.3 shows the resistance of the watermarking scheme
to time-shift modifications with and without the psychoa-
coustic projection. The pdfs of the correlation results under
hypothesisH0 andH1 are depicted after a random-shift at-
tack. Shifts between 200 and 500 samples has been used
in these simulations. Fig 3.a shows the vulnerability of the
scheme to this type of transformation, and Fig 3.b illustrates
the improvement brought on by the use of the psychoacous-
tic projection.
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Fig 3.a: Correlation distributions after shift without projection
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Fig 3.b: Correlation distributions after shift with projection
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Fig. 3. Robustness to random shift.

In Fig.4, we look into the improvements with respect to
the random cropping attack. We recall here that a cropping
attack is achieved by randomly deleting samples from the
original signal. In Fig.4 the impact of the use of the psy-
choacoustic projection is depicted in the context of random
cropping. For this simulation the cropping rate has been
taken between 500 and 1000 samples. Fig.4.a shows the im-
pact of the attack on the computed correlations. Comparing
Fig.3.a to Fig.4.a, it may seem that the random shift attack is
more efficient than the random cropping attack. However it
is important to realise that a random shift attack is relatively
easy to inverse as the only parameter at stake is the offset
used by the attacker. The random cropping case is much
more complicated as the attacker has many degrees of free-
dom to implement the random removal of samples. The fact
that Fig.4.a does not show catastrophic consequences after
cropping is because we chose a uniformly distributed crop-
ping. As such, the beginning of the signal is only slightly
distorted. Moreover, we saw in section 5.1 that an imperfect
synchronisation factorν of 50 samples can be tolerated; it

renders the desynchronisation effect acceptable on the first
frames of the signal. Fig.4.b illustrates that the distortion
introduced by deleting samples has been traced by the pro-
jection, ensuring a good retrieval of the FFT windows used
for the watermark embedding. Once again, we observe well
separated pdfs under hypothesisH0 andH1.
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Fig. 4. Robustness to random cropping.

Fig.5 depicts the ROC curves, in the context of the ran-
dom cropping attack, with2nd and4th order decoders.
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Fig. 5. ROC curves with random cropping.

6. CONCLUSION AND FUTURE WORK

In this paper, a new robust psychoacoustic projection is used
to locate the extracted feature vectors as a means of synchro-
nisation for side-informednth-order watermarking. The
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new scheme benefits from the higher level of security gained
from asymmetric detection, as well as the large efficiency
of nth-order detectors. Simulations were carried out on
real audio signals under various desynchronisation and ad-
ditive noise conditions, and they show that the psychoacous-
tic projection significantly improves the robustness of the
watermarking scheme.

In future work, we will continue to develop the extrac-
tion function by including pre-processing of the signal so as
to compute optimised values for the thresholdsTh1 , Th2 ,
Th3 .
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