

Kant, Cybernetics, and Cybersecurity:
Integration and Secure Computation

Jon K. Burmeister and Ziyuan Meng

College of Mount Saint Vincent

Drew University

jon.burmeister@cmsv.edu, zmeng@drew.edu

Abstract1

This paper argues that Kant’s philosophy of mind sheds light on Heinz Von
Foerster’s cybernetic thinking, and that both thinkers help us identify dubious
theoretical assumptions within computer science and cybersecurity. Specifically,
these two thinkers discuss the importance of integration within systems, a position
which contrasts with a reductionist form of thinking currently common in

approach leads to the design of insecure software systems. To develop an
improved theory of security and vulnerability, we look for inspiration to Kant and
von Foerster.

Our approach focuses on two types of integration within Kant’s philosophy of
mind – the “unity of apperception,” and the unity of the mental faculties – and
then traces these same themes in the thought of von Foerster. Building on that, we
argue two points: 1.) a secure software system never directly takes its structure or
operations from the external environement, and 2.) the more integrated a software
system is, the more secure it is. To illustrate these points, we analyze a case study
of a code injection attack against a vulnerable web application, and show how
such a system is vulnerable to cyberattack when it fails to maintain its integrated
form in response to inputs from the environment.

Keywords: Philosophy of Mind, Cybernetics, Cybersecurity, Information Systems,
Kant, Heinz von Foerster, Integration, Reductionism.

1. Introduction

The philosophical tradition of German Idealism and the field of cybernetics
share a common impulse: both strive to think systematically and at a high
level of generality, with the goal of discovering foundational principles that
apply across a wide variety of domains. Immanuel Kant and Heinz von

1 We are grateful to Dr. Barry Burd, Dr. Emily Hill, and Dr. David Storey for serving as peer-
editors on this article.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 53

computer science. We argue that such a reductionist and narrowly technocentric

mailto:jon.burmeister@cmsv.edu
mailto:zmeng@drew.edu

Foerster are classic representatives of this shared impulse within these two
traditions.

Like Von Foerster, Kant’s curiosity was voracious, and his corpus covers a
mind boggling array of topics, from meteorology to biology to logic to mind
to physics to art. Had Kant lived in the 20th century, there is no doubt he
would have also written about computing machines, particularly given his
intense focus on questions about cognition and mathematics. This essay
presents von Foerster as a kind of bridge between Kant’s highly abstract
philosophy of mind and the highly concrete world of computer science and
cybersecurity. There are at least two reasons to treat von Foerster as such a
bridge. One is that his own philosophy of mind strongly overlaps with that
of Kant. The second reason is that, as a cyberneticist, he seeks to discover
structural similarities between the mind and computers that Kant simply
could not explore due to his time in history. Given how vast both the
benefits and the dangers of computing technologies are, it is prudent to
muster the greatest intellectual resources possible in order to understand its
possibilities. This article is one such attempt.

Computing technologies, which in many respects are the offspring of the
cybernetics movement, are being increasingly woven into our everyday
lives. From online shopping to communication, health care, transportation,
etc., software continues (as the saying goes) to eat the world. But this rapid
growth comes with a cost. As human beings rely more and more on
software, the damage that can be inflicted by malware and software
vulnerabilities increases proportionately. As more and more aspects of
human life are ‘virtualized,’ and as virtual and augmented reality take steps
toward mass adoption, advanced cybersecurity must be a central pillar of
any developed society.

Yet the current dominant approaches to cybersecurity are clearly
inadequate. One does not need to be an expert to recognize this, given the
frequency of high profile cyber breaches in the news. In 2020 for example,
in the most damaging reported cyberattack in U.S. history, a group of
cybercriminals gained access to the publishing system of IT management
software firm SolarWind and injected malware into the update package of
their network monitoring software product, used by the intelligence services

54 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 ISSN: 1690-4524

and military of the U.S government among many others (FireEye, 2020).2
Speaking generally, we believe that one reason for the failure of traditional
approaches to cybersecurity is that they take a reductionist and
technocentric attitude, focusing solely on technical explanations of
cyberattack incidents. The dominant thinking in cybersecurity is based on
theoretical assumptions that are both unexamined and dubious.

For all of these reasons, new and bold approaches to cybersecurity are
needed, and this reality inspires our approach of looking for inspiration in
Kant’s philosophy of mind and von Foerster’s cybernetic thinking. We will
not be making strong claims about any kind of structural identity between
minds and possible computing machines, but rather will use analogical
reasoning to see what ideas might arise that are useful for improving
cybersecurity.

To further justify this unorthodox interdisciplinary approach, let us consider
a ground-level question: what is the basic problem that cybersecurity
attempts to solve? The problem is how to enable a computing system to be
in one respect open to what is outside of itself, but in another respect closed:
that is, to be open to ‘friendly’ information (emails from friends, ebooks we
purchased) but closed to ‘malicious’ information (ransomware, spyware,
etc.). To defend a system that is entirely closed would require no work at
all, and to defend a system that is entirely open would be impossible. So the
main challenge of cybersecurity is to create a system that is both open and
closed in precisely the right manner, and with precisely the right balance.
We will argue below that the ability of a computer system to defend itself
stands in direct proportion to that system’s level of integration, or
unificiation. Thus, the more integrated a system is, the more secure that
system will be.

To make that argument, we will first examine Immanuel Kant’s ‘unity of
apperception’ and unity of the cognitive faculties as a model of an
integrated system. This will lead into a discussion of von Foersters’
constructivism and his views on cognitive unity. What becomes apparent is

2 Solar Wind’s software product Orion became a trojan for the attackers to further compromise the
security of these organizations and perform cyber espionage remotely. The malware embedded in
Orion is so sophisticated that it evaded detection for more than eight months. The scale and depth
of impact of SolarWind hack is still under investigation as this article is being written.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 55

that Kant and von Foerster’s shared constructivist epistemology – also seen
through the cybernetic idea of ‘operational closure’ – springs out of a shared
anti-reductionist view of mind, i.e., an emphasis on the integration of the
mind. These two themes inform our thesis of two necessary (but not
sufficient) conditions of secure computation:

a) A secure software system never directly takes its structure or
operations from the external environment.

b) A secure software system’s components are functionally integrated
during the runtime execution.

Finally, we will evaluate this thesis in a case study of code injection
vulnerability in a web application. We will not provide a technically
specific solution for this kind of vulnerability, but rather will use this case
study to illustrate the two necessary conditions for secure computation
mentioned above.

2. Kant on the Mind: Constructivist and Anti-Reductionist

As with any other discipline, computer science did not emerge from a
cultural and intellectual vacuum. In addition to advances in electrical
engineering, prior advances within the philosophical tradition helped make
computer science possible. Some of those advances were very old, such as
Aristotle’s founding of the discipline of formal logic (including the
syllogism), while some were more recent, such as work in logic and
mathematics in early 20th century analytic philosophy. Computer science’s
indebtedness to the western philosophical tradition for some of its most
fundamental concepts is an historical fact which encourages us to consider
what that much older tradition might continue to contribute to it, including
to the field of cybersecurity.

Since the time of Plato, many Western philosophers have focused on both
the unity of the mind itself and the mind’s unifying powers, viewing these
two qualities as central to what makes something a mind in the first place.3
Immanuel Kant stands in this tradition. In the Critique of Pure Reason, he
gives an account of what the human mind can and cannot know, and thus
necessarily delves into the nature of how the mind itself functions. Kant

3 E.g., see Plato’s Phaedrus 249B-C.

56 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 ISSN: 1690-4524

views the mind as having a number of capacities, two of which are a
receptive faculty which he calls ‘sensibility,’ which receives sensations
from the outside world, and an active faculty which he calls the
‘understanding’ and that applies concepts to those sensations to produce
knowledge (Kant, 1965, p. 93). In thinking about computers in this light,
we must take great care not to anthropomorphize them; yet we will argue
that Kant’s view of the mind as an integrated and integrating set of
processes may shed light on how computational processes might be
constructed in a similar fashion.

2.1. Kant’s Constructivism

As is well known, Kant’s views on the nature of the mind and the nature of
knowledge are (among other things) constructivist and anti-empiricist, in
that they are a response to what he sees as the untenable philosophy of mind
proposed by empiricist thinkers such as Locke and Hume. Against the
empiricist view that knowledge consists of sense perceptions, where the
mind functions like melted wax and passively receives the imprint of
sensations, Kant famously argues that knowledge only arises when sense
perceptions received by the mind are combined with concepts already
present in the mind. That is, he argues that knowledge only arises by being
constructed by the mind. In contemporary philosophy of mind, Wilfred
Sellars coins a useful phrase to describe the anti-empiricist approach when
he speaks of the “myth of the given” – i.e., the myth that knowledge is
produced in the mind simply by the environment giving the mind sensory
impressions (Sellars, 1997).

Against the empiricist position, Kant views the understanding (the ‘active’
capacity of the mind) as unifying the many representations and sensations
that the mind receives. The understanding combines the numerous
sensations that enter the mind (e.g., various kinds of visual information) into
a single cognition, by means of the application of a concept (e.g., “That is a
dog.”). This mental act of combination, Kant says, is “an act of the self-
activity of the subject,” and thus “it cannot be executed except by the
subject itself” (Kant, 1965, p. 152). In other words, the mind passively
receives an unorganized stream of sensations but then actively engages in
the integration of those sensations, thereby lending order and wholeness to
that previously unorganized stream (Kant, 1965, p. 134).

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 57

Kant talks about this unifying activity of the mind as being the “unity of
apperception.” In his words, knowledge is made possible by “the formal
unity of consciousness in the synthesis of the manifold of representations”
(Kant, 1965, p. 135). Said otherwise, the mind receives a manifold or
multiplicity of sensory representations and it then synthesizes or unifies that
manifold by means of a concept.

2.2. Kant’s Anti-Reductionism

But how is the mind able to do this? What enables it to act as such a
unifying, integrating force? Crucially, Kant argues that the mind’s own
unity is what enables this (Kant, 1965, p. 135). The mind is the “original”
unity (Kant, 1965, p. 152), which then grants unity to the stream of
sensations that it receives, resulting in our various meaningful experiences
of the world. As we will see, Kant’s view of the mind as a unity is an ‘anti-
reductionist’ view of the mind, insofar as it does not reduce the mind to
being a mere combination of its particular facilities or capacities. It is this
unity and irreducibility of the mind -- i.e., not the unity that the mind grants
to sensory representations but rather the mind’s own unity -- that we must
explore in greater depth. And it is this unity and irreducibility which we
will connect closely with the thought of Heinz von Foerster.

Before doing so, however, we should take a moment to reflect on the
connections between the ideas sketched out above. For Kant, there is a
causal relationship between his anti-empiricist view of knowledge, on the
one hand, and his ‘unity/unifier’ view of the mind, on the other. The
connection is this: sensory information from the environment does not (a la
empiricism) passively and directly produce knowledge in the mind, and the
reason why this is the case is that the mind -- which is itself an ‘original
unity’ -- actively unifies sensory information with concepts to produce
knowledge. In other words, Kant’s view that the mind integrates sensory
perceptions with concepts is the cause of his anti-empiricism. Kant is
claiming that the human mind is simply not the sort of system which
receives sensory information and passively holds it in an unstructured
manner; instead, the mind alters or ‘processes’ that information by applying
concepts to it, and by unifying it, while at the same time being itself a
unified system.

58 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 ISSN: 1690-4524

Now we can turn to a more detailed discussion of Kant’s anti-reductionist
view of the mind, and to what he means in calling the mind an “original’
unity. The aspect of the mind’s unity that we will focus on is Kant’s view
of how the faculties of the mind (e.g., sensation, understanding, reason, etc.)
stand in relation to the mind itself. The key point for Kant is that the
faculties of the mind are not parts of the mind, but rather are powers of the
mind. That is, the faculties of the mind can be separated from a conceptual
point of view, but they are not ‘sections’ of the mind which could be
separated from each other in reality. Rather, they are the powers by which
the mind -- the mind as a unity -- accomplishes particular things. For
example, the faculty of the understanding is not what understands, but
instead the understanding is the power by which the mind understands. By
way of analogy, we could speak of a lion as possessing the powers (or
faculties) of ‘raising young,’ ‘sleeping,’ and ‘hunting.’ Clearly we would
not say that the power of hunting is what hunts, but rather the lion hunts:
hunting is the power by which the lion hunts. Hunting is not a ‘part’ of a
lion but rather a power which enables an activity.

Kant’s view that the mind’s faculties are not ‘parts’ but rather ‘powers’ can
be seen simply in the words that he chooses in the German. Instead of
referring to Teilen (parts) of the mind, he refers to the word Vermögen or
the Fähigkeiten of the mind, each of which can be translated as ‘faculties’
or ‘powers’ or ‘capacities.’ Furthermore, in the Introduction to the Critique
of Judgment Kant not only uses this language of Vermögen but also stresses
the unity of the facilities within the mind. For example, in the first edition
of that text he entitles a section as “On the System of All of the Powers of
the Human Mind” (“Von dem System Aller des Meschlichen Gemüts”)
(Kant, 1974, p. 18). And in the second edition, he speaks of the
Seelenvermögen, or powers of the soul, as all operating within a larger
whole (Kant, 1987, p. 16). It is, then, one mind that engages in various
distinct activities, which we then describe in terms of various faculties being
at work.

Another way that Kant talks about this topic is simply by speaking of the
“subject” or the “I” which possesses the various mental faculties. As Kant
puts it in the Critique of Pure Reason, “The manifold of representations,
which are given in an intuition, would not be one and all my representations
if they did not all belong to one self-consciousness” (Kant, 1965, p. 153).

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 59

In all of these ways, then, Kant argues for the unity and the irreducibility of
the mind, and the inseparability of its various faculties. Its faculties are not
‘parts’ of the mind but powers, and they function as activities of one
unified, integrated entity.

3. Von Foerster on Cognition: Constructivist and Anti-Reductionist

Kant’s rejection of empiricist epistemology and his emphasis on the mind as
an original unity continues to shape Western thought to this day. One place
that we see this is in the thought of Heinz von Foerster, widely seen as the
founder of second-order cybernetics. The ideas of Kant were alive and well
– even if often just as a foil – in early 20th century Vienna, where much of
von Foerster’s formation took place. The shadow of Kant hung over both
the Vienna Circle and Ludwig Wittgenstein, two of von Foerster’s main
philosophical influences. Yet this essay will not explore Kant’s role in the
historical genealogy of von Foersters’ ideas; rather, it will focus on von
Foerster’s ideas themselves, and two ideas in particular that bear a striking
resemblance to the ideas of Kant discussed above.

From a practical perspective, our goal is to find insights in the philosophy of
mind that are relevant to computer science and to improving cybersecurity.
Von Foerster himself desired to transfer insights from his studies of the
human mind to the study of computing machines. In his essay on human
cognition and human memory that we focus on below, he states, “We hope
to provide with these studies the foundation for a new architecture of future
computers….” (Foerster, 2003, p. 123). In this essay, however, we will not
propose any new computing architecture but rather will apply ideas from
Kant and von Forester to the current Turing-based computing systems, to
develop a theory of what makes for secure computing.

3.1. Von Foerster’s Constructivism

The first and most obvious way in which von Foerster’s thinking about the
mind resembles Kant’s thinking is by following in Kant’s anti-empiricist,
constructivist footsteps. Von Foerster’s essay “On Constructing a Reality”

60 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 ISSN: 1690-4524

contains a straightforward and unambiguous statement of this position in
one of its section headings: “The Environment as We Perceive It Is Our
Invention” (von Foerster, 2003, p. 212). That essay deals primarily with
neurophysiology, but von Foerster articulates a similar position in his
“Thoughts and Notes on Cognition,” where he challenges the traditional
view of the ontological status of information. This traditional view is that
information is a free-floating “token” transmitted to a receiving agent from
the environment. By contrast, von Foester argues that instead of being
passively received, information is the outcome of a cognitive process. That
is, information is constructed:

“Cognitive processes create descriptions of, that is information,
about the environment.

The environment contains no information. The environment is as it
is.” (von Foerster, 2003, p. 189)

Von Foerster’s claim entails that inputs from the environment into a
functioning cognitive system never directly determine the next state of that
system. Rather, the system integrates the inputs from the environment with
its own internal-state to generate meaningful responses. (von Foerster, 2003,
p. 110).

Von Foerster’s anti-empiricist, constructivist view of the mind and
knowledge are of a piece with another idea in his tool-kit, the idea of
‘operational closure.’ For Von Foerster, a system is operationally closed
when “each output becomes the next input just as soon as it is produced”
(von Foerster, 2003, p. 314). This way of describing operational closure
requires that we rethink what we actually mean by the word ‘input,’ since
an input that is produced by the system itself is not an input in the
traditional sense, i.e., one which enters into the system from outside the
system. In light of this new sense of ‘input,’ we can see that operational
closure entails that the system in question is not directly structured by its
environment, but rather by its own self.

It is crucial to note that operational closure does not require that the system
be entirely closed off from its environment; rather, it simply means that the
system does not take structures or its operations directly from its

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 61

environment. Put in this way, we can see how operational closure at work
within the human mind is just another way of talking about constructivism.

Niklas Luhmann, the German sociologist and friend of von Foerster,
addresses the implications of operational closure for epistemology,
describing it as a “radical shift” away from a representational view of
knowledge. Speaking of operational closure and the related concept of
autopoesis, Luhmann states that these concepts are a rejection of the view
that “something from the environment enters into the one who cognizes, and
that the environment is represented, mirrored, imitated, or simulated within
a cognizing system” (Luhmann, 2009, pp. 153-4). The anti-empiricist
dimensions of operational closure are clear: knowledge is produced in the
mind not by sensory impressions being received and ‘mirrored’ by the
mind, but rather are produced through the activities of the mind itself.
Applied to the human mental system, operational closure entails a
constructivist epistemology.

3.2. Von Foerster’s Anti-Reductionism

The second way in which von Foerster’s philosophy of mind resembles
Kant’s is its strong anti-reductionism, i.e., its emphasis on the mind as an
integrated functional whole. Just as with Kant, von Foerster’s anti-
reductionism regarding the faculties is the cause of his anti-empiricism. For
example, empiricism becomes untenable when one rejects the idea that the
faculty of perception can operate independently of concepts. A
constructivist epistemology is the necessary result of viewing the faculties
of conceptualizing and perceiving as part of a larger, integrated whole.

In his essay “What Is Memory that It May Have Hindsight and Foresight As
Well,” von Foerster proposes a thesis that the human cognitive architecture
is a unified whole (von Foerster, 2003, pp. 101). He argues that the various
faculties of our cognitive architecture are separable when conceptually
analyzed, but inseparable in the actual cognitive experience.

In the stream of cognitive processes, one can conceptually isolate
certain components, for instance (i) the faculty to see (ii) the faculty
to remember (iii) the faculty to infer. But if one wishes to isolate

62 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 ISSN: 1690-4524

these faculties functionally or locally, one is doomed to fail.
Consequently, if the mechanisms that are responsible for any of these
faculties are to be discovered, then the totality of cognitive processes
must be considered” (von Foerster, 2002, p. 105)

Von Foerster’s claim is that viewing cognitive faculties as operating in an
isolated and independent manner will lead to a confused view of mental
functions. As an example, he points in the same essay to the mnemon (a
‘unit’ of memory) in higher mammals to illustrate that memory is not an
isolated component to store and retrieve the past data, but rather is an
integral part of the neural cognitive process as a whole (von Foerster, 2003,
p. 110). As he puts it, such processes are “subservient to the maintenance of
the integrity of the organism as a functioning unit” (von Foerster, 2003, p.
172).

Yet von Foerster does not develop this anti-reductionist line of thinking just
to discuss human cognition. His ultimate goal in the “What is Memory”
article is to lay the conceptual foundations for a new, more integrated
architecture for the future of computing (von Foerster, 2003, pp. 123).4 Our
essay will not explore this ambitious topic since we are focusing on a theory
of secure computing for traditional computer architectures. Nonetheless,
von Foerster is clear that his critique of cognitive reductionism is a critique
that applies to the common way of thinking about computers as well.
Speaking about both the computer scientists and the biologists of his day, he
says that they are hesitant to view mental faculties as activities of a single
cognitive entity. They have, he says, a “reluctance to adopt a conceptual
framework in which apparently separable higher mental faculties as, for
example, ‘to learn,’ ‘to remember,’ ‘to perceive,’ ‘to recall,’ ‘to predict,’
etc., are seen as various manifestations of a single, more inclusive
phenomenon, namely, ‘cognition’....” (von Foerster, 2003 p. 172). Von
Foerster provides a plausible explanation for why many thinkers tend to
take this reductionist approach: it makes the work of understanding things
(seemingly) easier, because it entails that the components of a system “can
be reduced to rather trivial mechanisms” (von Foerster, 2003, p. 172).

4 One architecture that he proposed is to integrate memory, logic inference and sensory capabilities
in an adaptive computing unit called “cognitive tile” (von Foerster, 2003, pp. 119–123). He argues
that a complex computing system can be built by combining multiple cognitive tiles.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 63

An example of this mistake, he says, is reducing perception to mere
“inputs”; in other words, as we have argued above, a non-integrated view of
the faculties leads directly to an empiricist epistemology. When computer
scientists attempt to recreate human cognitive processes within computers,
it is simply easier to assume that those processes operate in isolation and
then to model computer processes accordingly. But according to von
Foerster, “by separating these functions from the totality of cognitive
processes one has abandoned the original problem, and now searches for
mechanisms that implement entirely different functions…” (von Foerster,
2003, p. 172). In the sections below, our goal is to take a small step toward
the more difficult but hopefully more productive approach of viewing the
various computing capacities as subservient to the integrity of the whole,
and thus gain more insight into secure and insecure computation.

4. A Constructivist and Anti-Reductionist Theory of Cybersecurity

What can computer scientists and cybersecurity specialists learn from
Kantian philosophy of mind and von Foerster’s thesis on cognitive
systems?

First, both Kant’s and von Foerster’s constructivism, and opposition to
empiricism, entail the indirectness of perceptions’ impact on the mind. A
cognitive system never allows input from the external world to directly give
rise to higher level mental functions. Similarly, a secure software system
must always interact with the environment only indirectly. The inputs –
which are analogous to perceptions – should not directly generate the
outcome of the computation without reference to pre-established internal
structure (which are analogous to concepts in the mind). However, in many
cybersecurity attack case studies, we see that the systems are vulnerable
precisely because they allow an attacker to directly inject code into the
system and instruct the system to perform unintended computational tasks.
A successful code injection attack can occur only when a software system
lacks operational closure, since the system directly takes its structure and
order from its environment without the participation of the system’s own
internal properties, e.g., its algorithms or its memory state. (By ‘software

64 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 ISSN: 1690-4524

system’ we mean software both at the application level and at the operating
system level, such as the kernel.)

These observations lead to our first postulation: a secure software system
never allows an input from the external environment to determine the
meaning of the computation without reference to its previously established
internal state. That is, a secure software system never allows an input alone
to determine the meaning of a computation, since that would involve
bypassing the system’s previously established internal state. This is not to
say that a secure system is nondeterministic, or cannot be predicted; it is
simply to say that a secure system must compute an outcome based on both
the input and its own internal state.

Second, cognitive faculties mentioned by von Foerster find their analogues
in software design. For instance, one commonly adopted web application
design pattern models a website as a system consisting of 1) a user interface
component with the ability to take input data, 2) a data storage component
to retain the past “experience” of the system, 3) a logic inference
component, i.e., an algorithm (Buschmann et al., 1996, p. 3). These
components correspond to the cognitive faculties of perception, memory,
and inference in von Foerster's cognitive architecture, respectively.
However, unlike Kantian epistemology and von Forester’s thesis on
cognition which emphasize unity, the computer science and Information
Technology industry today often adopts a reductionist and atomistic
approach in software engineering. They often develop these components as
isolated functional units, and then only later on find a way to connect them
in the process of software engineering. Independently developed functional
units are also often reused in multiple software projects for the purpose of
cost savings. Today, software developers can easily speed up their
engineering process by using pre-built platforms shared by other projects.
However, the fact that these components are interconnected does not mean
that they are integrated, i.e., made into a unified whole. We show in the
essay’s next section that the weak links of mere interconnectedness (versus
the strong links of integration) are what lead to vulnerabilities that can be
exploited in high profile cyber attacks against web applications. This
observation leads us to our second postulation that the unity of functional
components is vital to the security of a software system, just as the unity of

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 65

cognitive faculties is vital to human consciousness. The more that the
integration of the software system resembles the integration of cognition,
the more secure it will be. It should be noted, however, that our thesis about
the necessary conditions of secure computing does not depend on whether
there actually exists any structural identity between cognition and
computing.

Before looking at a case study, it is useful to restate our thesis about two
necessary (but not sufficient) conditions of secure computing:

a) A secure software system never directly takes its structure or
operations from the external environment.

b) A secure software system’s different components are integrated
during the runtime execution.

4.1. Case Study

In this section we will use a famous security vulnerability case study, “SQL
injection,” to examine the cyber attack’s effect on the functional unity and
operational closure of a software system. SQL injection is a form of code
injection attack in which an attacker inserts carefully crafted malicious code
into a database component of a software system (e.g., a running web
application) and forces the system to execute certain tasks which it is not
intended to perform in the original design (Clarke et al., 2012; N. Singh et
al., 2016).

Strategies to thwart SQL injections are well studied, as seen for example in
the approach of using “prepared statements.”5 Our goal in this paper is not
to propose any specific mitigation method, but rather to use SQL injection
as an empirical study to develop a general theory of some of the necessary
conditions of secure computation. We will use a simple example of a login
web application to illustrate and compare secure and insecure computations.
We will examine our two postulations in both scenarios.

5 Solutions to mitigate SQL injection have been developed since 2005. The most effective one is to
use prepared statements. Details of using prepared statements to prevent SQL injection is outside
of the scope of this paper (Clarke et al., 2012, p. 342-349; Castillo et al., 2019, p. 171-175). The
solution essentially translates the syntax structure of the SQL query into an immutable function
called a prepared statement, then has all the incoming user inputs to be bound as the data
parameters of the function. It, therefore, effectively prevents the user provided data from
modifying the original syntax structure of the query.

66 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 ISSN: 1690-4524

4.1.1. A Primer on Web Apps: In this section, we will use a simplified
authentication web application as an example to give a basic review of how
a modern website works. A typical web application consists of a client
component and a server component. The client component consists of web
pages running in a user’s web browser. These pages are essentially the user
interfaces for various functions. The server component is running at a
remote server which can be further divided into two subcomponents: a
database system which is responsible for data storage and management, and
a web application’s control logic (i.e., its algorithms). The relationship of
the three components -- the client’s user interface, the database, and the
control logic -- is illustrated in Figure 1. A user can send a request to the
server, and upon receiving the request, the server processes the request,
generates a response, and then sends it back to the user. It is this request-
response cycle that constitutes a web application.

An authentication website typically supports a login function. Let us
consider a scenario where a user tries to login to the system. In this
scenario, a user interacts with a login web page (depicted in Figure 1 left)
where he/she can fill in user information. When the user clicks the “Sign In”
button, a login request including the username and password is sent to the
server. Upon receiving the user’s request, the web application’s control
logic will first buffer the user-submitted username and password in two
variables, $U and $P, and then will query the database to see if it contains a
matching user record. In this case study, we assume that the database stores
the records of the registered users in a table named “User_info” with two
columns: “UserName” and “Pwd”:

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 67

Figure 1. Client - Server Web Architecture for a login function of a
website. The client side has a login web page displayed.

Table 1. An example of database table “User_info”

UserName Pwd

Bob 76ddk8

Alice 6754gh

Joe 12345

The web application queries its database by using a standard database query
language called “Structured Query Language” (SQL) (Melton & Simon,
1993). The following is the SQL query to verify the requesting user’s
credentials:

SELECT * FROM User_info WHERE UserName = '$U' AND Pwd
= '$P'

68 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 ISSN: 1690-4524

The query is pre-stored in the system’s memory. The control logic first
plugs the contents of $U and $P into the query. The query is then submitted
to the database engine to execute.

For example, if a user submits a username Joe and a password 12345, the
control logic will form the following query and send it to the database
engine to execute:

SELECT * FROM User_info WHERE UserName = 'Joe' AND Pwd
= '12345'

The above query asks the database engine to fetch all records with full
details (symbolized by *) from the “User_info” table where the UserName
is equal to Joe and Password is equal to 12345. The WHERE clause is used
to specify the criteria to filter the records. It limits the query to fetch only
the necessary records which meet the criteria.

If the query finds any matching rows from the “User_info” table, the login
is successful, as seen in Figure 2. Otherwise, the login fails.

Figure 2. A successful login request with Joe and 12345 as the credential.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 69

From the perspective of operational closure, the above computing process of
login manifests the constructivist quality of indirectness. The user login
request, as input, influences the outcome of the authentication process only
after the pre-established control logic algorithm performs a comparison with
the system’s internal state: the state of the database table “User_info”. The
user login request alone does not dictate the outcome of the computation;
rather, the user login request must be processed within the control logic
algorithm before the outcome of the computation is produced.

Here, we can also apply von Forester’s thesis on cognitive unity to examine
the functional unity of the system during the login process. The ability of
the system’s user interface component to receive the user’s input is
analogous to the cognitive faculty of perception, while its database
component is analogous to the faculty of memory, and the web application’s
control logic component is analogous to the faculty of inference. In a secure
login computing process, the activities of these three components are
inseparable from each other just like their cognitive counterparts are
inseparable in any meaningful conscious experience involving sense data. In
other words, the activities of these three components form a functional
unity. Thus, the outcome of the computing process consists of the
integration of the user input, the state of the database table, and the structure
of the control logic. This integration is illustrated in the following flow
figure:

Figure 3. A login process must integrate all three components: user input,
control logic and the database to decide whether to grant access to the user.

While the above login system seems simple and can securely handle user
inputs most of the time, certain malicious inputs can trigger the system to
malfunction. As we will see in the following section, the system contains a

70 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 ISSN: 1690-4524

code injection vulnerability which allows a malicious user to directly inject
arbitrary code to execute and violate its unified form.

4.1.2. SQL injection to bypass authentication: SQL injection is one of the
most common hacking techniques against a website (Clarke et al., 2012). It
is a code injection technique used to attack web applications, in which
malicious SQL statements are inserted into a target system for execution.
SQL injection is not the only way an attacker can inject malicious code;
similar code injection vulnerabilities have been discovered in the past two
decades in many programming languages such as C, C++ (Seacord, 2005,
pp. 33–47) and Java (Long et al., 2013, pp. 20–30). The Open Web
Application Security Project (OWASP) has consistently listed code
injection vulnerability as the most common and most dangerous type of
vulnerability in web applications (OWASP, 2017). Although this paper
focuses only on SQL injections, our treatment of this topic holds promise to
shed light on other kinds of code injections as well. As mentioned earlier,
we will not be providing a technically specific solution for SQL injections,
but rather will use the SQL injection case study below to illustrate the two
necessary conditions for secure computation developed in the pages above.

To see how a SQL injection attack can disrupt the functional unity of a
target system, let us consider a hacker who does not have any credential and
tries to bypass the authentication process without providing any correct
username and password. To do this, the hacker submits the username as
Santa and the password as xyz' OR 'a' = 'a.6 After the control logic plugs
them into the query, the query statement becomes:

SELECT * FROM User_info WHERE UserName = 'Santa' AND
Pwd = 'xyz' OR 'a' = 'a'

Here, adding OR 'a'='a in user data alters the structure and the meaning of
the original SQL query -- that is, it alters the algorithm itself. Since 'a'='a'
is always True, UserName = 'Santa' AND Pwd = 'xyz' OR 'a' = 'a' always

6 Note that the hacker’s specific use of single quotes is based on his desire to have the code
injection fit correctly into the syntax of the query’s use of single quotes: SELECT * FROM
User_info WHERE UserName = '$U' AND Pwd = '$P'

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 71

evaluate to True.7 As a result, the query becomes equivalent to this
completely nonspecific, nondiscriminating selection:

SELECT * FROM User_info

In other words, the query returns all the entries from the “User_info” table
unconditionally, thus causing the web app control logic to mistakenly grant
access to the attacker. This process is illustrated in Figure 4.

Figure 4. SQL injection to bypass authentication.

It is crucial to see that the code injection violates the indirectness of the
system’s interaction with the external environment, since originally the pre-
established algorithm served as an intermediary between the environment
and the system as a whole. But now the injected code directly alters that
pre-established algorithm, by mixing itself with the algorithmic structure
stored in the memory. In doing so, the user data becomes code!

Additionally, the code injection violates the system’s functional unity. The
state of the database (“User_info” table) has now become causally irrelevant
to the rest of the system. As long as the “User_info” table is not empty, the

7 This is the case because, in SQL, the AND operator has higher precedence over OR operator.

72 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 ISSN: 1690-4524

attacker will successfully login to the system. The SQL injection sets the
control logic to directly grant the user access in a way that cuts the database
content entirely out of the causal loop. That is, the code injection can easily
pry apart the system as a whole and reduce it to a less integrated system.
The following flow figure illustrates the effects of the injection attack on the
system’s integration:

Figure 5. When an SQL injection attack occurs, the database becomes
separated from the login process. The dotted line from the Control Logic
(compared to the solid line in Figure 3) represents the SQL injection’s
violation and alteration of the original algorithm.

In fact, once the attacker discovers a SQL injection vulnerability, he/she can
take a bold action that even further compromises the system’s operational
closure, by injecting code to directly modify the database (see Appendix
A).

We should note that a SQL injection is just one kind of code injection, and
that the principles of indirectness and integration can be used to analyze the
vulnerabilities of computational systems to other kinds of code injection as
well. For example, in the C programming language, the well known buffer-
overflow injection vulnerability allows an attacker to inject binary code to a
target machine and get executed (Erickson, 2008, pp. 115–193).8

8 Our thesis can be extended to scenarios in which an exception occurs: an event which disrupts the
normal execution of a program. In the context of cybersecurity, only the exceptions induced by
user-provided inputs are relevant. If a user input causes an anticipated exception and there is code
in a program which safely handles the exception and quits the program if necessary, the execution
process is secure. It satisfies the necessary conditions of secure computation since the
computational outcome still depends not only on the user input but also on the state of the
exception and the part of an algorithm which handles it. If a user input causes an unanticipated
exception and eventually leads the software system to shut down, the program is by definition
vulnerable to denial of service attacks.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 73

5. Conclusion

In summary, we propose an anti-empiricist, non-reductionist thesis of two
necessary (but not sufficient) conditions of secure computing:

1. Security requires operational closure, which means that the
software system cannot take its structure or operations directly from
its external environment. For a system to be secure, an input can
generate computational outcomes only after being processed within
the system’s pre-existing internal structure. If a system lacks
operational closure, it will be insecure by definition, since it is
excessively open to external manipulation. Put differently, it is not
conceivable for a software system which is completely open to direct
external manipulation to be a secure system.

2. Security requires functional integration. The only way that a
software system can possess operational closure is by integrating its
subcomponents during the runtime execution. If it fails to do this, it
becomes insecure. Said otherwise, it not intelligible for a software
system to be secure if its functional unity has disintegrated during the
runtime execution, because this would compromise its operational
closure.

Our findings having presented a constructivist understanding of what makes
secure computation possible, and thus what constitutes vulnerabilities.
Instead of focusing on how accurately computations simulate objective
reality, our thesis takes a cue from Kantian transcendental idealism by
examining the conditions for a computation to be secure. Our approach
shifts the thinking of cybersecurity from what is computed to how it is
computed.

In terms of future research, there are several technical and theoretical
directions that might build on the findings of this essay. An immediate
follow-up empirical study would be to expand our thesis to other forms of
code injection. This could include close examinations of code injection
vulnerabilities across different programming languages and the persistent
code injection techniques employed by malware. In the long run, our

74 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 ISSN: 1690-4524

findings can also inspire a new generation of runtime vulnerability/malware
detection systems to protect software applications from code injection. One
can imagine a runtime self-monitoring system which checks the integration
of various functional components in a given system and blocks an ongoing
execution when it detects a violation of the system’s functional unity.

Additional future research might explore the connections between Kant and
von Foerster on the topic of self-reference. For example, in Kantian
transcendental idealism, the ‘subject’ is constituted by being self-conscious,
and we see a similar theme in von Foerster’s thoughts on recursivity in both
biological and computing systems (often in the forms of feedback loops),
and particularly in his second-order cybernetics approach of including the
observer into its own observations. We would like to know whether this sort
of self-referential, self-observing structure can bring higher levels of
integration to a system, i.e., not just integration of the system’s
subcomponents, but the integration of the system as a whole with itself.

A final point of potential future research is the novel architecture for
computing hardware which von Foerster proposed, based on his concept of
a “cognitive tile”: a computing unit with integrated memory, perception and
inference functions (von Foerster, 2003, pp. 119–123). This architecture
deserves a resurrection from the University of Illinois’ Biological Computer
Lab archives, for this long forgotten creature might provide deeper insight
into the nature of a truly integrated and truly secure computing system.

Acknowledgments

We thank Dr. Patrick Gamez and Dr. Joshua Shmikler for agreeing to be non-anonymous
reviewers of this paper.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 75

Appendix A. An example of using SQL injection to modify database
content

To see an example of using SQL injection to modify the database, consider
a scenario in the web login system introduced in the case study section: an
attacker submits the username as Santa'; INSERT INTO User_info
VALUES (“John”, “123abc”) -- and password as xyz. The query then
becomes:

SELECT * FROM User_info WHERE UserName = 'Santa';
INSERT INTO User_info VALUES (''John'', ''123abc'') -- AND
Pwd = 'xyz'

In the syntax of SQL, the symbol -- is reserved as the mark of the beginning
of comments. When the SQL interpreter of the database sees the mark -- in
the query, it ignores everything that follows. The second condition in the
WHERE clause, AND Pwd = '123xyz', is consequently blocked from
execution by the database engine.

The above query first selects all the user records with the name Santa, then
inserts a new row (''John'', ''123abc'') into “User_info”. This
computational effect is directly caused by injected code without reference to
the pre-stored algorithm and database. This process is illustrated in Figure 6
below.

76 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 ISSN: 1690-4524

Figure 6. An SQL injection attack to insert a record (John, 123abc) into the
database table: “User_info”.

References

Buschmann, F., Meunier, Regine, Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-

Oriented Software Architecture Volume 1: A System of Patterns (Volume 1 ed.). Wiley.
Castillo, R.E., Caliwag, J.A., Pagaduan, R.A., and Nagua, A.C. (2019). Prevention of SQL

Injection Attacks to Login Page of a Website Application using Prepared Statement
Technique. In Proceedings of the 2019 2nd International Conference on Information
Science and Systems (ICISS 2019). Association for Computing Machinery, New York,
NY, USA, 171–175. https://doi.org/10.1145/3322645.3322704

Clarke, J., Fowler, K., Oftedal, E., Alvarez, R. M., Hartley, D., Kornbrust, A., O’Leary-Steele, G.,
Revelli, A., Siddharth, S., & Slaviero, M. (2012). SQL Injection Attacks and Defense (2nd
ed.). Syngress.

Erickson, J. (2008). Hacking: The Art of Exploitation, 2nd Edition (2nd ed.). No Starch Press.
FireEye. (2020, December 13). Highly Evasive Attacker Leverages SolarWinds Supply Chain to

Compromise Multiple Global Victims With SUNBURST Backdoor.
https://www.fireeye.com/blog/threat-research/2020/12/evasive-attacker-leverages-
solarwinds-supply-chain-compromises-with-sunburst-backdoor.html

Kant, I. (1987). Critique of Judgment (1st ed.). Hackett Publishing.
Kant, I. (1965). Critique of Pure Reason (unabridged edition). St. Martin’s Press.
Long, F., Mohindra, D., Seacord, R., Sutherland, D., & Svoboda, D. (2013). Java Coding

Guidelines: 75 Recommendations for Reliable and Secure Programs. Addison-Wesley
Professional.

Luhmann, N. (2009). Self-Organization and Autopoiesis. In M. B. N. Hansen & B. Clarke (Eds.),
Emergence and Embodiment: New Essays on Second-Order Systems Theory (pp. 143–
156). Duke University Press Books.

Melton, J., & Simon, A. R. (1993). Understanding the New SQL: A Complete Guide (The Morgan
Kaufmann Series in Data Management Systems) (1st ed.). Morgan Kaufmann.

Open Web Application Security Project. (n.d.). OWASP Top Ten 2017. Owasp.Org. Retrieved
January 15, 2021, from https://owasp.org/www-project-top-ten/2017/

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 77

Sajjadi, S. M. S., & Tajalli Pour, B. (2013). Study of SQL Injection Attacks and Countermeasures.
International Journal of Computer and Communication Engineering, 539–542.
https://doi.org/10.7763/ijcce.2013.v2.244

Seacord, R. C. (2005). Secure Coding in C And C++ (1st ed.). Addison-Wesley Professional.
Sellars, W. (1997). Empiricism and the Philosophy of Mind (2nd Edition). Harvard University

Press.
Singh, N., Dayal, M., Raw R.S., and Kumar, S. (2016). SQL injection: Types, Methodology,

Attack Queries and Prevention. 2016 3rd International Conference on Computing for
Sustainable Global Development (INDIACom), New Delhi, India, 2016, 2872-2876.

von Foerster, H. (2003). Understanding Understanding: Essays on Cybernetics and Cognition.
Springer Publishing.

78 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 4 - YEAR 2021 ISSN: 1690-4524

	IP132LL21.pdf

