

Building a Cybersecurity Strategy

Carol Woody
1
 and Robert Ellison

2

1
Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, PA 15137, USA
2
Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, PA 15137, USA

1
cwoody@cert.org and

2
and ellison@sei.cmu

Abstract
1

A cybersecurity strategy provides a plan for the integration of security controls

and security-linked functional requirements that are implemented across the

system that is composed to protect the organization’s operational missions. A

cybersecurity strategy must include consideration for expected as well as

compromised performance, such as when a system is under attack. Implementing

this plan requires extensive collaboration across all participants in the lifecycle—

within and outside of the organization—as more services and third-party elements

are used. This paper focuses primarily on the elements of the cybersecurity

strategy that are critical for predicting the desired outcome based on decisions

implemented in the early segments of the lifecycle and examines how the available

evidence assembled along the way can be structured for software assurance

monitoring.

Keywords: cybersecurity, strategy, lifecycle, risk, software, assurance

1. Introduction

Today’s missions rely on highly integrated and complex technology that

must be protected from a wide range of adversaries. This technology must

operate in a highly dynamic and contested environment. Reliance on

operational security controls has provided insufficient protection for quite

some time. The role of cybersecurity engineering is growing in importance

as adversaries’ capabilities increase and systems shift from being “built for

purpose” to integrating reused components including legacy software, third-

party software, open source software, and external services (e.g., Azure

Cloud and Platform One).

A cybersecurity strategy is a critical element in ensuring that each

component and the composition of these components have sufficient

security to address a mission. This strategy does not occur without planning,

1
 Peer review and useful feedback was provided by colleagues Christopher J. Alberts, Suzanne M.

Miller and Timothy A. Chick. Editing and final reviews were handled by Communications

Services of the Software Engineering Institute.

206 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 1 - YEAR 2020 ISSN: 1690-4524

design, monitoring, and enforcing considerations of cybersecurity at all

levels. It is necessary to consider compliance, mandates for an authority to

operate, and good cybersecurity hygiene; however, these steps alone are not

sufficient to ensure the composition is secure enough. These responsibilities

touch on every aspect of the lifecycle. The current approach of programs is

to establish silos of excellence separating lifecycle activities; our approach

requires a high level of collaboration for cybersecurity that must cross all

activities, and that collaboration cannot be assumed.

The owners of the cybersecurity strategy are responsible for defining how a

system’s cybersecurity performs to meet its mission, even under attack.

These responsibilities include activities that achieve the following:

 Plan and design trusted relationships.

 Negotiate appropriate security requirements to ensure confidentiality,

integrity, and availability with sufficient monitoring in systems and

software.

 Plan and design sufficient resiliency to recognize, resist, and recover

from attacks.

 Plan for operational security under all circumstances, including

designed-in methods of denying critical information to an adversary to

avoid or minimize mission impact.

 Evaluate alternatives to determine the level of accepted cybersecurity

risk.

This paper focuses on the elements of the cybersecurity strategy that are

critical in the early segments of the lifecycle.

2. Cybersecurity Engineering Role

Integrating cybersecurity considerations into the early segments of a

lifecycle affects acquisition as well as system and software engineering.

Program management is ultimately responsible for cybersecurity (DoD,

2015); however, if they lack that specific expertise, management needs to

bring in resources with specialized knowledge and operational expertise,

which we describe as “cybersecurity engineering.” This concept can be

represented in one-to-many resources.

Cybersecurity engineering should focus on the following six key areas.

Although these areas are critical for building technology to operate in

today’s highly contested environments (Mead 2013), they are typically

given insufficient consideration in cybersecurity:

 risk determination

 defining and monitoring system and component interactions

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 1 - YEAR 2020 207

 trusted dependencies

 attacker response

 coordination of security throughout the lifecycle

 measurement for cybersecurity improvement

In risk determination, cybersecurity engineering incorporates the effective

consideration of threats and mission risk. Perceptions of risk drive assurance

decisions, and the lack of cybersecurity expertise in risk analysis can lead to

poor assurance choices. Involving individuals with knowledge about

successful attacks and how threats can impact the system’s operational

mission can be critical in the decision-making steps for appropriate

prioritization.

For defining and monitoring system and component interactions,

cybersecurity engineering considers risk to systems from the interaction

among technology components and external systems. Highly connected

systems require the alignment of cybersecurity risk across all stakeholders,

system components, and connected systems; otherwise, critical threats can

remain unaddressed (i.e., missed or ignored) at different points of

interaction.

The following risk areas should be considered in design and process

decisions:

 Interactions must be designed to be assured and segments of the design

will be scattered across various interacting components; verification that

the pieces are all effectively working together must be part of integration

validation.

 There are costs to addressing assurance, and tradeoffs must be made

among performance, reliability, usability, maintainability, etc. These

costs and tradeoffs must be balanced against the impact of the risks.

Then choices must be consistently applied across the range of

participating components.

 Interactions occur at many technology levels (e.g., network, security

appliances, architecture, applications, data storage) and are supported by

a wide range of roles. The choices made at each level must be

consistently applied across all levels for effective results.

In trusted dependencies, cybersecurity engineering evaluates the

dependencies and inherited risk to ensure the appropriate level of trust is

established. The following are key dependency considerations where trust is

involved:

 Each dependency represents a risk that needs to be shared among

interfacing components.

208 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 1 - YEAR 2020 ISSN: 1690-4524

 Dependency decisions should be based on a realistic assessment of the

threats, impacts, and opportunities represented by an interaction.

Controls placed on the interaction should reflect this analysis.

 Dependencies are not static, and trust relationships should be reviewed

to identify changes that warrant reconsideration.

 Using many shared components (e.g., reuse, open source, collaboration

environments) to build technology applications and infrastructure

increases the dependency on other’s assurance decisions that may not

meet mission needs.

Planning an attacker response is a responsibility that cybersecurity

engineering should oversee to ensure that system capabilities are included to

allow effective handling of the types of attacks that can be mission critical.

A broad community of attackers exists that has growing technology

capabilities. This community is able to compromise the confidentiality,

integrity, and availability of any and all of a system’s technology assets, and

the attacker profile is constantly changing.

Since there are no perfect protections and attacker capabilities continue to

grow, this coordination must consider the need to recognize, resist, and

recover. Ensuring a system is prepared to work, even when under attack,

requires extensive planning and coordination across all components and

technologies. The attacker uses the same technologies, processes, standards,

and practices to craft a compromise (socio-technical responses) as system

builders. Attacks are crafted to exploit the ways technology is normally

used or designed to contrive exceptional situations where defenses are

circumvented.

Coordination of cybersecurity across the lifecycle should be the

responsibility of cybersecurity engineering. Each step of the lifecycle

should include preparing for the fielded system. Protection must be applied

broadly across people, processes, and technology because the attacker will

take advantage of all possible entry points. This span of protection includes

acquisition decisions about software and services integrated into the system.

The role of implementing a cybersecurity strategy requires coordination

among system and software engineering, architects and designers,

developers, testers, verifiers, and implementers to identify potential gaps

and ways of addressing them to ensure the operational mission.

Measurement for cybersecurity improvement needs to be a responsibility of

cybersecurity engineering to coordinate data—from the various lifecycle

steps, decision-making levels, and system component evaluations—to show

that the steps designed to address cybersecurity are delivering expected

results. Tools can track vulnerabilities in code, testing can show defects, and

architecture analyses can identify design weaknesses. However, until these

elements are integrated, the operational risk perspective is missing. All

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 1 - YEAR 2020 209

elements of the socio-technical environment (e.g., practices, processes,

procedures, products) must tie together and measurements must be

consistent.

Cybersecurity engineering should monitor the range of lifecycle activities

needed to contribute to assurance. Monitoring these activities demonstrates

how the program is progressing toward its compliance and cybersecurity

operational goals. Figure 1shows the range of activities that can be applied

at various stages of the lifecycle to address design, coding, and

implementation weaknesses that contribute to reduced operational risk.

Cybersecurity engineering should assemble data to show that the

combination of lifecycle activities produces the results needed to reduce

mission impact from undetected weaknesses.

Planning an attacker response is a responsibility that cybersecurity

engineering should oversee to ensure that system capabilities are included to

allow effective handling of the types of attacks that can be mission critical.

A broad community of attackers exists that has growing technology

capabilities. This community is able to compromise the confidentiality,

integrity, and availability of any and all of a system’s technology assets, and

the attacker profile is constantly changing.

Since there are no perfect protections and attacker capabilities continue to

grow, this coordination must consider the need to recognize, resist, and

recover. Ensuring a system is prepared to work, even when under attack,

requires extensive planning and coordination across all components and

technologies. The attacker uses the same technologies, processes, standards,

and practices to craft a compromise (socio-technical responses) as system

builders. Attacks are crafted to exploit the ways technology is normally

used or designed to contrive exceptional situations where defenses are

circumvented.

Coordination of cybersecurity across the lifecycle should be the

responsibility of cybersecurity engineering. Each step of the lifecycle

should include preparing for the fielded system. Protection must be applied

broadly across people, processes, and technology because the attacker will

take advantage of all possible entry points. This span of protection includes

acquisition decisions about software and services integrated into the system.

The role of implementing a cybersecurity strategy requires coordination

among system and software engineering, architects and designers,

developers, testers, verifiers, and implementers to identify potential gaps

and ways of addressing them to ensure the operational mission.

Measurement for cybersecurity improvement needs to be a responsibility of

cybersecurity engineering to coordinate data—from the various lifecycle

steps, decision-making levels, and system component evaluations—to show

210 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 1 - YEAR 2020 ISSN: 1690-4524

that the steps designed to address cybersecurity are delivering expected

results. Tools can track vulnerabilities in code, testing can show defects, and

architecture analyses can identify design weaknesses. However, until these

elements are integrated, the operational risk perspective is missing. All

elements of the socio-technical environment (e.g., practices, processes,

procedures, products) must tie together and measurements must be

consistent.

Cybersecurity engineering should monitor the range of lifecycle activities

needed to contribute to assurance. Monitoring these activities demonstrates

how the program is progressing toward its compliance and cybersecurity

operational goals. Figure 1 shows the range of activities that can be applied

at various stages of the lifecycle to address design, coding, and

implementation weaknesses that contribute to reduced operational risk.

Cybersecurity engineering should assemble data to show that the

combination of lifecycle activities produces the results needed to reduce

mission impact from undetected weaknesses.

Figure 1: Addressing Cybersecurity Risk Across the Lifecycle

3. Software Assurance

Software assurance is the level of confidence that the software (1) is free

from vulnerabilities, either intentionally designed into the software or

accidentally inserted at any time during its lifecycle, and (2) functions as

intended. Vulnerability requirements lead naturally to a security focus, but

the design of a response must be based on the potential consequences. How

could a security compromise affect the intended behavior? Often adverse

changes in intended behavior affect data management. Has information

been disclosed or modified? Except for software-intensive mission-critical

systems, the most significant effects of a security compromise likely involve

changes in intended behavior related to reliability, safety, and availability.

Too often, an organization becomes aware of a successful security

compromise only by observing the consequences. A critical security risk for

mission-critical systems is that a security compromise is identified only

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 1 - YEAR 2020 211

after encountering a safety or reliability operational fault. Such a risk

increases the importance of eliminating security weaknesses during the

development lifecycle. The 2005 Department of Defense Guide for

Achieving Reliability, Availability, and Maintainability (RAM) emphasized

the importance of systems engineering design analysis over predicting

software reliability based on an analysis of faults found during integration

(DoD, 2005). Engineering analysis for cybersecurity is equally important.

In particular, threat modeling is essential during detailed systems

engineering design to identify potential weaknesses and propose appropriate

mitigations. The development of an attack surface guides threat modeling.

Threat modeling should also generate the outline of an assurance argument.

What are the most consequential threats? How will those threats be

sufficiently mitigated? How will the desired level of confidence be

demonstrated? Where possible, that confidence should be based on

engineering analysis, such as with design reviews and inspections.

Late lifecycle activities, such as testing, static analysis, and dynamic

analysis, typically offer only incomplete assurance. The design of the

DevSecOps pipeline, for example, should reflect the planned assurance

proposed by the cybersecurity engineering analysis done earlier in the

development lifecycle. Prioritizing requirements, selecting tools for

weakness identification and removal, tracking unaddressed weaknesses, and

establishing approval mechanisms for operational release should combine to

deliver data that supports growing confidence in the operational assurance

of the developing product.

Threat modeling incorporates engineering analysis into the design phases of

the lifecycle and supports verification and validation for demonstrating

assurance as shown in Figure 2. Threat modeling identifies possible

weaknesses that could be exploited and proposes mitigations if they are

exploited. That engineering analysis typically provides guidance on how to

validate those mitigations, such as with specific unit or integration tests.

212 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 1 - YEAR 2020 ISSN: 1690-4524

Figure 2: Incorporating Engineering Analysis

Engineering analysis can play an equivalent role for reliability, availability,

and maintainability as recommended in the 2005 Department of Defense

Guide for Achieving Reliability, Availability, and Maintainability (DoD,

2005).

How can we determine the confidence that a system will behave as

expected? It is impossible to examine or test every possible combination of

conditions that could affect a system. But achieving that confidence is

important to those acquiring, developing, and using the system. Such

confidence should be based on concrete evidence and not just on the

opinions of developers or reviewers. An assurance case provides the

argument mapped to available evidence. The level of confidence in a system

should depend on understanding the evidence that leads to an increase in the

confidence that a system property holds.

Evaluating an assurance case can also be subjective because evidence can

be incomplete and/or inconsistent. One approach for evaluating confidence

from a collection of evidence is estimating the likelihood that a claim is

false. One approach is to test the argument against the evidence provided by

a developer; it might be insufficient to justify the claim. For example, the

following would indicate possible unsubstantiated arguments:

 The test plans did not include all of the hazards identified during design.

 The web application developers had limited security experience.

 The acquirer did not provide sufficient data to validate the modeling and

simulations.

 Integration testing did not adequately test recovery following component

failures.

It is not obvious, but such an approach constructs an alternate assurance

case for the same claim. Instead of constructing an argument for the validity

of a claim supported by available evidence, we identify the various

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 1 - YEAR 2020 213

possibilities for why the claim is false (Goodenough, 2015). An assurance

case consists of gathering evidence or performing analysis that removes

those possibilities. Each eliminated possibility removes a reason for doubt

and thereby increases our confidence in the claim. During a review, the

developer should be able to show how to eliminate the doubts that are

raised. This approach moves beyond a simplistic focus on whether the

software satisfies the requirements to also consider what the software

should not do. This approach is especially important for reused and third-

party software that was not built to a specification.

When performing an assurance case analysis of a completed design, the

outcome is rather black and white—either design artifacts are complete and

sufficient, or they are not. Reviewing an in-progress design requires a more

nuanced approach—one that reflects relative risk—since the design artifacts

are (necessarily) in different stages of completion. For this example, the SEI

used a simple and familiar stoplight approach to scoring (named for the red,

yellow, and green colors it uses) (Blanchette, 2009). The color red

designates a relatively high-risk area, the color yellow designates a

relatively medium-risk area, and the color green indicates a relatively low-

risk area. The rules for assigning colors are slightly different at the evidence

level than they are at the level of the claims, as is shown in Figure 3.

Figure 3: Scoring Legend

When the sub-claims are not all uniformly the same color, an analyst must

make a subjective decision about the risk to assign to a node. For example,

an analyst might conclude a medium risk given the following doubts raised

about the evidence and arguments:

1. Only a subset of information exchanges has been implemented to date.

2. The noted risks are, at best, medium at this time.

3. The security architecture has not been completely propagated across the

system.

4. An evaluation of the security architecture revealed some design choices

that will prevent system accreditation.

5. Preliminary field tests indicate some information exchanges are

exceeding prescribed timelines for completion.

214 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 1 - YEAR 2020 ISSN: 1690-4524

The feasibility of achieving high assurance for a particular system is

strongly influenced by early engineering choices. A summary of the results

of a number of studies on errors that were introduced in the development

lifecycle and when they are discovered is shown in Figure 4 (Feiler, 2012).

Requirement and design errors dominate, and there are few tools available

to automatically find them.

Figure 4: Faults Introduced and Found During Development

4. Cybersecurity Strategy

Evidence is available at many points along the lifecycle, but structuring it in

a way that it is useful for establishing software assurance requires careful

planning and analysis. The cybersecurity strategy must integrate the

expertise from cybersecurity engineering with evidence of how the product

was planned and how it actually performs. As noted in a recent Blog by Phil

Venables, a specialist in enterprise risk, information and cybersecurity, and

business resilience who sits on the National Institute of Standards (NIST)

Information Security and Privacy Advisory Board, cybersecurity must be

carefully folded into systems delivery (Venables, 2020). This cannot be

done in a haphazard manner if the results need to meet critical operational

requirements.

An assurance case can be used as a framework to connect the various

elements of this analysis to show gaps and sufficiency. By mapping

evidence that is appropriately generated and selected from the various steps

of the lifecycle into an assurance case, considerations for how the system

should function and how it should not function can be collected and

analyzed. If done properly, this evidence will demonstrate that the system

effectively addresses software assurance.

5. Conclusion

A cybersecurity strategy should be a shared view of the planned security for

the system; it allows the many participants and component developers to

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 1 - YEAR 2020 215

understand how the scattered pieces of controls and functionality are

expected to integrate to achieve mission success. When changes are needed

for security at the component level, the risk to the system can be readily

identified and balancing options for mission success can be implemented.

However, too many organizations accept incomplete and tacked-on security

because they have not addressed the collaboration needed early in the

lifecycle to build the strategy and integrate cybersecurity into the system.

The results appear in the news daily as new exploits are reported.

By defining what is needed in the cybersecurity strategy, organizations can

build clear and effective means for measuring success across the lifecycle.

Various measures have been assembled, but there is limited research about

the efficiency and effectiveness of these options.

References

Blanchette, S. (2009). Assurance Cases for Design Analysis of Complex System of Systems

Software. Software Engineering Institute Digital Library.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=29062

DoD. (2005). Department of Defense Guide for Achieving Reliability, Availability, and

Maintainability. Department of Defense. http://www.acqnotes.com/Attachments/

DoD%20Reliability%20Availability%20and%20Maintainability%20(RAM)%20Guide.pdf

DoD. (2015). Outline and Guidance for Acquisition Program’s Cybersecurity Strategies.

Department of Defense. http://www.acqnotes.com/wp-content/uploads/2014/09/DoD-

CIO-Cybersecurity-Strategy-Outline-and-Guidance-10-Nov-15-1.pdf

Feiler, P., Goodenough, J., Gurfinkel, A., Weinstock, C., & Wrage, L. (2009). Reliability

Improvement and Validation Framework. Software Engineering Institute Digital Library.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=34069

Goodenough, J., Weinstock, C., & Klein, A. (2015). Eliminative Argumentation: A Basis for

Arguing Confidence in System Properties. Software Engineering Institute Digital Library.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=434805

Mead, N. R., Shoemaker, D., & Woody, C. (2013) Principles and Measurement Models for

Software Assurance. 2013 IJSSE Special Issue on Cybersecurity Scientific Validation.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=298843

Venables, P. (2020). Cybersecurity Macro Themes for the 2020’s—Updated. Risk &

Cybersecurity. https://www.philvenables.com/post/cybersecurity-macro-themes-for-the-

2020-s-updated

216 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 18 - NUMBER 1 - YEAR 2020 ISSN: 1690-4524

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=29062
http://www.acqnotes.com/Attachments/DoD%20Reliability%20Availability%20and%20Maintainability%20(RAM)%20Guide.pdf
http://www.acqnotes.com/Attachments/DoD%20Reliability%20Availability%20and%20Maintainability%20(RAM)%20Guide.pdf
http://www.acqnotes.com/wp-content/uploads/2014/09/DoD-CIO-Cybersecurity-Strategy-Outline-and-Guidance-10-Nov-15-1.pdf
http://www.acqnotes.com/wp-content/uploads/2014/09/DoD-CIO-Cybersecurity-Strategy-Outline-and-Guidance-10-Nov-15-1.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=34069
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=434805
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=298843
https://www.philvenables.com/post/cybersecurity-macro-themes-for-the-2020-s-updated
https://www.philvenables.com/post/cybersecurity-macro-themes-for-the-2020-s-updated

	IP111LL20.pdf

