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Abstract
1
 

 
A cybersecurity strategy provides a plan for the integration of security controls 

and security-linked functional requirements that are implemented across the 

system that is composed to protect the organization’s operational missions. A 

cybersecurity strategy must include consideration for expected as well as 

compromised performance, such as when a system is under attack. Implementing 

this plan requires extensive collaboration across all participants in the lifecycle—

within and outside of the organization—as more services and third-party elements 

are used. This paper focuses primarily on the elements of the cybersecurity 

strategy that are critical for predicting the desired outcome based on decisions 

implemented in the early segments of the lifecycle and examines how the available 

evidence assembled along the way can be structured for software assurance 

monitoring. 
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1. Introduction 

 

Today’s missions rely on highly integrated and complex technology that 

must be protected from a wide range of adversaries. This technology must 

operate in a highly dynamic and contested environment. Reliance on 

operational security controls has provided insufficient protection for quite 

some time. The role of cybersecurity engineering is growing in importance 

as adversaries’ capabilities increase and systems shift from being “built for 

purpose” to integrating reused components including legacy software, third-

party software, open source software, and external services (e.g., Azure 

Cloud and Platform One). 

 

A cybersecurity strategy is a critical element in ensuring that each 

component and the composition of these components have sufficient 

security to address a mission. This strategy does not occur without planning, 
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design, monitoring, and enforcing considerations of cybersecurity at all 

levels. It is necessary to consider compliance, mandates for an authority to 

operate, and good cybersecurity hygiene; however, these steps alone are not 

sufficient to ensure the composition is secure enough. These responsibilities 

touch on every aspect of the lifecycle. The current approach of programs is 

to establish silos of excellence separating lifecycle activities; our approach 

requires a high level of collaboration for cybersecurity that must cross all 

activities, and that collaboration cannot be assumed. 

 

The owners of the cybersecurity strategy are responsible for defining how a 

system’s cybersecurity performs to meet its mission, even under attack. 

These responsibilities include activities that achieve the following: 

 Plan and design trusted relationships.  

 Negotiate appropriate security requirements to ensure confidentiality, 

integrity, and availability with sufficient monitoring in systems and 

software. 

 Plan and design sufficient resiliency to recognize, resist, and recover 

from attacks. 

 Plan for operational security under all circumstances, including 

designed-in methods of denying critical information to an adversary to 

avoid or minimize mission impact. 

 Evaluate alternatives to determine the level of accepted cybersecurity 

risk. 

 

This paper focuses on the elements of the cybersecurity strategy that are 

critical in the early segments of the lifecycle. 

 

 

2. Cybersecurity Engineering Role 

 

Integrating cybersecurity considerations into the early segments of a 

lifecycle affects acquisition as well as system and software engineering. 

Program management is ultimately responsible for cybersecurity (DoD, 

2015); however, if they lack that specific expertise, management needs to 

bring in resources with specialized knowledge and operational expertise, 

which we describe as “cybersecurity engineering.” This concept can be 

represented in one-to-many resources. 

 

Cybersecurity engineering should focus on the following six key areas. 

Although these areas are critical for building technology to operate in 

today’s highly contested environments (Mead 2013), they are typically 

given insufficient consideration in cybersecurity: 

 risk determination 

 defining and monitoring system and component interactions  
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 trusted dependencies 

 attacker response 

 coordination of security throughout the lifecycle 

 measurement for cybersecurity improvement 

 

In risk determination, cybersecurity engineering incorporates the effective 

consideration of threats and mission risk. Perceptions of risk drive assurance 

decisions, and the lack of cybersecurity expertise in risk analysis can lead to 

poor assurance choices. Involving individuals with knowledge about 

successful attacks and how threats can impact the system’s operational 

mission can be critical in the decision-making steps for appropriate 

prioritization. 

 

For defining and monitoring system and component interactions, 

cybersecurity engineering considers risk to systems from the interaction 

among technology components and external systems. Highly connected 

systems require the alignment of cybersecurity risk across all stakeholders, 

system components, and connected systems; otherwise, critical threats can 

remain unaddressed (i.e., missed or ignored) at different points of 

interaction.  

 

The following risk areas should be considered in design and process 

decisions: 

 Interactions must be designed to be assured and segments of the design 

will be scattered across various interacting components; verification that 

the pieces are all effectively working together must be part of integration 

validation. 

 There are costs to addressing assurance, and tradeoffs must be made 

among performance, reliability, usability, maintainability, etc. These 

costs and tradeoffs must be balanced against the impact of the risks. 

Then choices must be consistently applied across the range of 

participating components. 

 Interactions occur at many technology levels (e.g., network, security 

appliances, architecture, applications, data storage) and are supported by 

a wide range of roles. The choices made at each level must be 

consistently applied across all levels for effective results. 

 

In trusted dependencies, cybersecurity engineering evaluates the 

dependencies and inherited risk to ensure the appropriate level of trust is 

established. The following are key dependency considerations where trust is 

involved: 

 Each dependency represents a risk that needs to be shared among 

interfacing components. 
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 Dependency decisions should be based on a realistic assessment of the 

threats, impacts, and opportunities represented by an interaction. 

Controls placed on the interaction should reflect this analysis. 

 Dependencies are not static, and trust relationships should be reviewed 

to identify changes that warrant reconsideration. 

 Using many shared components (e.g., reuse, open source, collaboration 

environments) to build technology applications and infrastructure 

increases the dependency on other’s assurance decisions that may not 

meet mission needs. 

 

Planning an attacker response is a responsibility that cybersecurity 

engineering should oversee to ensure that system capabilities are included to 

allow effective handling of the types of attacks that can be mission critical. 

A broad community of attackers exists that has growing technology 

capabilities. This community is able to compromise the confidentiality, 

integrity, and availability of any and all of a system’s technology assets, and 

the attacker profile is constantly changing.  

 

Since there are no perfect protections and attacker capabilities continue to 

grow, this coordination must consider the need to recognize, resist, and 

recover. Ensuring a system is prepared to work, even when under attack, 

requires extensive planning and coordination across all components and 

technologies. The attacker uses the same technologies, processes, standards, 

and practices to craft a compromise (socio-technical responses) as system 

builders. Attacks are crafted to exploit the ways technology is normally 

used or designed to contrive exceptional situations where defenses are 

circumvented. 

 

Coordination of cybersecurity across the lifecycle should be the 

responsibility of cybersecurity engineering. Each step of the lifecycle 

should include preparing for the fielded system. Protection must be applied 

broadly across people, processes, and technology because the attacker will 

take advantage of all possible entry points. This span of protection includes 

acquisition decisions about software and services integrated into the system. 

The role of implementing a cybersecurity strategy requires coordination 

among system and software engineering, architects and designers, 

developers, testers, verifiers, and implementers to identify potential gaps 

and ways of addressing them to ensure the operational mission. 

 

Measurement for cybersecurity improvement needs to be a responsibility of 

cybersecurity engineering to coordinate data—from the various lifecycle 

steps, decision-making levels, and system component evaluations—to show 

that the steps designed to address cybersecurity are delivering expected 

results. Tools can track vulnerabilities in code, testing can show defects, and 

architecture analyses can identify design weaknesses. However, until these 

elements are integrated, the operational risk perspective is missing. All 
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elements of the socio-technical environment (e.g., practices, processes, 

procedures, products) must tie together and measurements must be 

consistent. 

 

Cybersecurity engineering should monitor the range of lifecycle activities 

needed to contribute to assurance. Monitoring these activities demonstrates 

how the program is progressing toward its compliance and cybersecurity 

operational goals. Figure 1shows the range of activities that can be applied 

at various stages of the lifecycle to address design, coding, and 

implementation weaknesses that contribute to reduced operational risk. 

Cybersecurity engineering should assemble data to show that the 

combination of lifecycle activities produces the results needed to reduce 

mission impact from undetected weaknesses. 

 

Planning an attacker response is a responsibility that cybersecurity 

engineering should oversee to ensure that system capabilities are included to 

allow effective handling of the types of attacks that can be mission critical. 

A broad community of attackers exists that has growing technology 

capabilities. This community is able to compromise the confidentiality, 

integrity, and availability of any and all of a system’s technology assets, and 

the attacker profile is constantly changing.  

 

Since there are no perfect protections and attacker capabilities continue to 

grow, this coordination must consider the need to recognize, resist, and 

recover. Ensuring a system is prepared to work, even when under attack, 

requires extensive planning and coordination across all components and 

technologies. The attacker uses the same technologies, processes, standards, 

and practices to craft a compromise (socio-technical responses) as system 

builders. Attacks are crafted to exploit the ways technology is normally 

used or designed to contrive exceptional situations where defenses are 

circumvented. 

 

Coordination of cybersecurity across the lifecycle should be the 

responsibility of cybersecurity engineering. Each step of the lifecycle 

should include preparing for the fielded system. Protection must be applied 

broadly across people, processes, and technology because the attacker will 

take advantage of all possible entry points. This span of protection includes 

acquisition decisions about software and services integrated into the system. 

The role of implementing a cybersecurity strategy requires coordination 

among system and software engineering, architects and designers, 

developers, testers, verifiers, and implementers to identify potential gaps 

and ways of addressing them to ensure the operational mission. 

 

Measurement for cybersecurity improvement needs to be a responsibility of 

cybersecurity engineering to coordinate data—from the various lifecycle 

steps, decision-making levels, and system component evaluations—to show 
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that the steps designed to address cybersecurity are delivering expected 

results. Tools can track vulnerabilities in code, testing can show defects, and 

architecture analyses can identify design weaknesses. However, until these 

elements are integrated, the operational risk perspective is missing. All 

elements of the socio-technical environment (e.g., practices, processes, 

procedures, products) must tie together and measurements must be 

consistent. 

 

Cybersecurity engineering should monitor the range of lifecycle activities 

needed to contribute to assurance. Monitoring these activities demonstrates 

how the program is progressing toward its compliance and cybersecurity 

operational goals. Figure 1 shows the range of activities that can be applied 

at various stages of the lifecycle to address design, coding, and 

implementation weaknesses that contribute to reduced operational risk. 

Cybersecurity engineering should assemble data to show that the 

combination of lifecycle activities produces the results needed to reduce 

mission impact from undetected weaknesses. 

 

 
Figure 1: Addressing Cybersecurity Risk Across the Lifecycle 

 

 

3. Software Assurance 

 

Software assurance is the level of confidence that the software (1) is free 

from vulnerabilities, either intentionally designed into the software or 

accidentally inserted at any time during its lifecycle, and (2) functions as 

intended. Vulnerability requirements lead naturally to a security focus, but 

the design of a response must be based on the potential consequences. How 

could a security compromise affect the intended behavior? Often adverse 

changes in intended behavior affect data management. Has information 

been disclosed or modified? Except for software-intensive mission-critical 

systems, the most significant effects of a security compromise likely involve 

changes in intended behavior related to reliability, safety, and availability. 

 

Too often, an organization becomes aware of a successful security 

compromise only by observing the consequences. A critical security risk for 

mission-critical systems is that a security compromise is identified only 
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after encountering a safety or reliability operational fault. Such a risk 

increases the importance of eliminating security weaknesses during the 

development lifecycle. The 2005 Department of Defense Guide for 

Achieving Reliability, Availability, and Maintainability (RAM) emphasized 

the importance of systems engineering design analysis over predicting 

software reliability based on an analysis of faults found during integration 

(DoD, 2005). Engineering analysis for cybersecurity is equally important.  

 

In particular, threat modeling is essential during detailed systems 

engineering design to identify potential weaknesses and propose appropriate 

mitigations. The development of an attack surface guides threat modeling. 

Threat modeling should also generate the outline of an assurance argument. 

What are the most consequential threats? How will those threats be 

sufficiently mitigated? How will the desired level of confidence be 

demonstrated? Where possible, that confidence should be based on 

engineering analysis, such as with design reviews and inspections.  

 

Late lifecycle activities, such as testing, static analysis, and dynamic 

analysis, typically offer only incomplete assurance. The design of the 

DevSecOps pipeline, for example, should reflect the planned assurance 

proposed by the cybersecurity engineering analysis done earlier in the 

development lifecycle. Prioritizing requirements, selecting tools for 

weakness identification and removal, tracking unaddressed weaknesses, and 

establishing approval mechanisms for operational release should combine to 

deliver data that supports growing confidence in the operational assurance 

of the developing product. 

 

Threat modeling incorporates engineering analysis into the design phases of 

the lifecycle and supports verification and validation for demonstrating 

assurance as shown in Figure 2. Threat modeling identifies possible 

weaknesses that could be exploited and proposes mitigations if they are 

exploited. That engineering analysis typically provides guidance on how to 

validate those mitigations, such as with specific unit or integration tests. 
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Figure 2: Incorporating Engineering Analysis 

 

Engineering analysis can play an equivalent role for reliability, availability, 

and maintainability as recommended in the 2005 Department of Defense 

Guide for Achieving Reliability, Availability, and Maintainability (DoD, 

2005). 

 

How can we determine the confidence that a system will behave as 

expected? It is impossible to examine or test every possible combination of 

conditions that could affect a system. But achieving that confidence is 

important to those acquiring, developing, and using the system. Such 

confidence should be based on concrete evidence and not just on the 

opinions of developers or reviewers. An assurance case provides the 

argument mapped to available evidence. The level of confidence in a system 

should depend on understanding the evidence that leads to an increase in the 

confidence that a system property holds. 

 

Evaluating an assurance case can also be subjective because evidence can 

be incomplete and/or inconsistent. One approach for evaluating confidence 

from a collection of evidence is estimating the likelihood that a claim is 

false. One approach is to test the argument against the evidence provided by 

a developer; it might be insufficient to justify the claim. For example, the 

following would indicate possible unsubstantiated arguments: 

 The test plans did not include all of the hazards identified during design. 

 The web application developers had limited security experience.  

 The acquirer did not provide sufficient data to validate the modeling and 

simulations. 

 Integration testing did not adequately test recovery following component 

failures. 

 

It is not obvious, but such an approach constructs an alternate assurance 

case for the same claim. Instead of constructing an argument for the validity 

of a claim supported by available evidence, we identify the various 
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possibilities for why the claim is false (Goodenough, 2015). An assurance 

case consists of gathering evidence or performing analysis that removes 

those possibilities. Each eliminated possibility removes a reason for doubt 

and thereby increases our confidence in the claim. During a review, the 

developer should be able to show how to eliminate the doubts that are 

raised. This approach moves beyond a simplistic focus on whether the 

software satisfies the requirements to also consider what the software 

should not do. This approach is especially important for reused and third-

party software that was not built to a specification. 

 

When performing an assurance case analysis of a completed design, the 

outcome is rather black and white—either design artifacts are complete and 

sufficient, or they are not. Reviewing an in-progress design requires a more 

nuanced approach—one that reflects relative risk—since the design artifacts 

are (necessarily) in different stages of completion. For this example, the SEI 

used a simple and familiar stoplight approach to scoring (named for the red, 

yellow, and green colors it uses) (Blanchette, 2009). The color red 

designates a relatively high-risk area, the color yellow designates a 

relatively medium-risk area, and the color green indicates a relatively low-

risk area. The rules for assigning colors are slightly different at the evidence 

level than they are at the level of the claims, as is shown in Figure 3. 

 

 
Figure 3: Scoring Legend 

 

When the sub-claims are not all uniformly the same color, an analyst must 

make a subjective decision about the risk to assign to a node. For example, 

an analyst might conclude a medium risk given the following doubts raised 

about the evidence and arguments: 

1. Only a subset of information exchanges has been implemented to date. 

2. The noted risks are, at best, medium at this time.  

3. The security architecture has not been completely propagated across the 

system. 

4. An evaluation of the security architecture revealed some design choices 

that will prevent system accreditation. 

5. Preliminary field tests indicate some information exchanges are 

exceeding prescribed timelines for completion. 
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The feasibility of achieving high assurance for a particular system is 

strongly influenced by early engineering choices. A summary of the results 

of a number of studies on errors that were introduced in the development 

lifecycle and when they are discovered is shown in Figure 4 (Feiler, 2012). 

Requirement and design errors dominate, and there are few tools available 

to automatically find them. 

 

 
Figure 4: Faults Introduced and Found During Development 

4. Cybersecurity Strategy 

 

Evidence is available at many points along the lifecycle, but structuring it in 

a way that it is useful for establishing software assurance requires careful 

planning and analysis. The cybersecurity strategy must integrate the 

expertise from cybersecurity engineering with evidence of how the product 

was planned and how it actually performs. As noted in a recent Blog by Phil 

Venables, a specialist in enterprise risk, information and cybersecurity, and 

business resilience who sits on the National Institute of Standards (NIST) 

Information Security and Privacy Advisory Board, cybersecurity must be 

carefully folded into systems delivery (Venables, 2020). This cannot be 

done in a haphazard manner if the results need to meet critical operational 

requirements.  

 

An assurance case can be used as a framework to connect the various 

elements of this analysis to show gaps and sufficiency. By mapping 

evidence that is appropriately generated and selected from the various steps 

of the lifecycle into an assurance case, considerations for how the system 

should function and how it should not function can be collected and 

analyzed. If done properly, this evidence will demonstrate that the system 

effectively addresses software assurance. 

 

 

5. Conclusion 

 

A cybersecurity strategy should be a shared view of the planned security for 

the system; it allows the many participants and component developers to 
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understand how the scattered pieces of controls and functionality are 

expected to integrate to achieve mission success. When changes are needed 

for security at the component level, the risk to the system can be readily 

identified and balancing options for mission success can be implemented. 

However, too many organizations accept incomplete and tacked-on security 

because they have not addressed the collaboration needed early in the 

lifecycle to build the strategy and integrate cybersecurity into the system. 

The results appear in the news daily as new exploits are reported. 

 

By defining what is needed in the cybersecurity strategy, organizations can 

build clear and effective means for measuring success across the lifecycle. 

Various measures have been assembled, but there is limited research about 

the efficiency and effectiveness of these options. 
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