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ABSTRACT

In this paper we develop a fuzzy image filter which
consists of a multi-layered fuzzy structure based on
the weighted fuzzy blend filter for the removal of noise
from images heavily corrupted by impulse noise, while
preserving the intricate details of the image. The
introduction of multi-layered fuzzy systems substan-
tially decreases the number of rules to be learnt. We
then show how Evolutionary Algorithms (EAs) can be
used to effectively learn the fuzzy rules in each knowl-
edge base. Results are presented for impulse noise
corruption of the well-known ‘Lena’ image.

Keywords: Fuzzy filter, image enhancement, multi-
layered fuzzy system, evolutionary learning, evolution-
ary algorithm.

1. INTRODUCTION

Conventional image enhancement techniques such as
mean and median filtering have been employed in
various applications in the past and are still being
used. However techniques using Fuzzy Logic (FL)
which mimics human reasoning and tolerates ambi-
guities well are increasingly being looked into as alter-
natives to these conventional techniques.

When using FL to any practical application, the ques-
tion arises as to how the fuzzy rule base should be
decided. Usually, human intuition is used to decide
these rule bases with the intention of seeing a human-
like behaviour from the system. However EAs which
belong to the category of artificial intelligence tech-
niques is proving to be very powerful when determin-

ing the fuzzy rules in the knowledge base rather than
employing human experience and knowledge. This is
specifically true in automated processes where the hu-
man intervention is a minimum.

In this paper, both FL and EAs are employed to show
how they could be used in a practical digital image
processing system to remove heavy impulse noise from
corrupted images. It is shown how a Multi-Layered
Fuzzy Logic (MLFL) structure can be developed as
a fuzzy image filter to reduce the high computational
power required otherwise.

Section 2 of the paper gives an introduction to MLFL
systems. In Section 3 we present a simple analysis
of the Weighted Fuzzy Blend Filter presented in [1].
It will be used to construct a two layered fuzzy image
enhancement algorithm in Section 4, whose fuzzy rules
in each layer will be learnt from corrupted data by an
evolutionary algorithm. Application will be made to
well-known ‘Lena’ image and comparisons are made
where applicable.

2. MULTI-LAYERED FUZZY LOGIC
SYSTEMS

A key consideration when designing FL systems is the
size of the rule base, which increases exponentially
with the number of inputs - the so called ‘curse of di-
mensionality’. For example consider the 8 input - sin-
gle output single-layer FL system shown in Figure 1
and the MLFL structure shown in Figure 2. In the
MLFL structure the output of the first layer is com-
bined with the output of the second layer to obtain
the final output.
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Figure 1: Single-Layer Fuzzy Logic System

Figure 2: A Multi-Layered Fuzzy Logic System

The Fuzzy Knowledge Base (FKB) for the single-layer
fuzzy system consists of 28 = 256 rules assuming each
input is represented using a membership function hav-
ing two fuzzy sets. For the MLFL system shown in
Figure 2, the first layer will have 24 = 16 rules and
the second layer will have another 24 = 16 rules, mak-
ing the total number of rules to 32. The total num-
ber of rules in the FKB has been reduced by a factor
of 8 in this example, by employing a multi-layered
approach. A question that arises when designing a
multi-layered structure is how do we break down the
inputs among different layers. There are two possible
ways to solve this problem according to recent papers
published in the area of MLFL systems. One method
is to break up the inputs so that a physically mean-
ingful output is produced from the first layer and then
use it together with the second layer to obtain the fi-
nal output. This kind of approach has been proven
to be successful in [3] where a MLFL controller has
been developed for the control of a robot. Here the
output of the first layer is a control variable giving
the direction of a robot from an initial position. Then
it is input to the second layer to control the speed of
the moving robot. But obtaining a meaningful output
variable from the first layer is not essential to design

a successful MLFL system, see [4], where the balanc-
ing of an inverted pendulum is tackled using a multi-
layered fuzzy approach. How to structure the inputs
to a MLFL system among different layers is an open
research question.

Different applications that show how multi-layered
fuzzy systems and EAs can be used to find fuzzy rule
bases are described in [2], [5], [6], [7] and [8].

3. THE WEIGHTED FUZZY BLEND
FILTER

We begin with a discussion of the Weighted Fuzzy
Blend Filter (WFBF) presented in [1]. From this filter
our multi-layered fuzzy filter will be developed.

The WFBF consists of two components to recover
original pixel values from a corrupted image. The
first component is aimed at detecting noisy pixels by
comparing the intensity differences between a selected
pixel and the neighbouring pixels in a sliding window
of 3 × 3. The second component concentrates on the
pixel data re-construction when necessary. Both com-
ponents use fuzzy reasoning to detect if the pixel is
noisy and to reconstruct the pixel by using mean or
median filters. A 3×3 sliding window is shown below.




I1 I2 I3

I4 I0 I5

I6 I7 I8




Let us suppose the pixel to be processed is I0 and pix-
els I1 to I4 have been processed. The input variables
to the first FKB are the n = 4 intensity differences
given by,

xj = abs(Ij
′ − I0) j = 1, · · · , 4 (1)

Since the difference values for pixels I5 to I8 are un-
certain as they may be highly corrupted by noise, they
are not used as fuzzy inputs. Two input fuzzy sets,
named DH = Difference High and DL = Difference
Low, are defined with membership functions in terms
of constants c1 = 10 and c2 = 40, given as follows:

UDH(x) =




0 x ≤ c1,
(x − c1)/(c2 − c1) c1 < x < c2,
1 x ≥ c2.

UDL(x) =




1 x ≤ c1,
(c2 − x)/(c2 − c1) c1 < x < c2,
0 x ≥ c2.

The input variables lie in the interval [0, 255] for the
processing of grey scale images. The output variable of
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the fuzzy inference engine out ∈ [0, 1], is a member of
two fuzzy sets, B1 = V L and B2 = V H respectively.
The centres of these sets are taken to be y1 = 0 and
y2 = 1. There are M = 16 rules in the fuzzy rule
base. The rules are built using intuition of how the
intensity differences determine the existence of a noisy
pixel. For example rule � may be of the form:

If (x1 is A�
1) and (x2 is A�

2) and (x3 is A�
3)

and (x4 is A�
4) then (out is B�)

where on the antecedent side of the rule A�
1 = DH,

A�
2 = DH, A�

3 = DH and A�
4 = DH, and in the

consequent B� = V L. Each rule has been designed to
deal with a particular pattern of intensity difference
among the neighbouring pixels.

Given a fuzzy rule base with M rules, the output out
as given in Equation 2 uses a singleton fuzzifier, Mam-
dani product inference engine and centre average de-
fuzzifier, see [10].

out =

∑M
�=1 y�(

∏n
i=1 µA�

i
(xi))∑M

�=1(
∏n

i=1 µA�
i
(xi))

(2)

where y� are centres of the output sets B�.

The enhanced pixel output is given by,

Ienhanced = out × I0 + (1 − out) × Irecons (3)

where Ienhanced is the output of the pixel to be esti-
mated, out is the fuzzy output, I0 is the input value
of the pixel and Irecons is the reconstructed value for
that pixel.

Two recovery methods are used to obtain Irecons, one
is the median value when intensity gradient is high,
and the other is the mean value when the intensity
gradient is low. The intensity gradients are defined in
4 directions:

G(1) = abs(I
′
4 − I5),

G(2) = abs(I
′
2 − I7),

G(3) = abs(I
′
3 − I6),

G(4) = abs(I
′
1 − I8)

and the minimum gradient is defined as,

Gmin = min{G(1), G(2), G(3), G(4)} (4)

The median value Imedian is calculated using a 3 × 3
sliding window, while the mean value Imean is calcu-
lated using the 2 outer pixels corresponding to the
minimum gradient direction given by Gmin. For ex-
ample, if the minimum gradient is in the horizontal
direction the mean will be calculated as (I4 + I5)/2.

Another fuzzy membership function GL (Low Gradi-
ent), with c1 = 40 and c2 = 80, is introduced for
determining which method should be used,

UGL(x) =




1 x ≤ c1,
(c2 − x)/(c2 − c1) c1 < x < c2,
0 x ≥ c2.

Fundamentally this second level in the WFBF incor-
porates, components of the traditional mean and me-
dian filters. We take weights for both mean and me-
dian to be simply UGL(x) and UGL = 1 − UGL(x) =
UGH , respectively. Then the reconstructed value is
obtained from,

Irecons = UGL(x) × Imean + UGL × Imedian (5)

This filter has been shown to be capable of removing
noise from images corrupted by impulse noise up to
30%, see details in [1].

The fuzzy rule base in the WFBF filter was created us-
ing human reasoning. A simple iterative search can be
undertaken on all possible (216 = 65, 536) fuzzy rule
bases to find the best rule base. The Mean Square
Error (MSE) between the uncorrupted image and the
enhanced version of the corrupted image was used as
the criteria to determine the quality of the image.
A 256 × 256 image corrupted by 30% impulse noise
was used and the minimum MSE obtained was 90.12.
This MSE was lower than that obtained by the WFBF
which shows that it is possible to find a ‘better’ WFBF
by a direct search of all the possible knowledge bases.

In this paper we propose to develop a second layer
which has as output the reconstructed pixel value
Irecons which can be immediately input into Equation
(3).

4. MULTI-LAYERED FUZZY IMAGE
FILTER

Multi-Layered Fuzzy System Design
A multi-layered fuzzy logic system is now designed to
remove impulse noise in similar manner to the WFBF.
This particular structure, shown in Figure 3, has two
FKBs. The first layer has 4 input intensity differ-
ences given by Equation 1 and an output variable
out ∈ {0, 1} representing whether a selected pixel is
noisy or not as described in Section 3. The fuzzy mem-
bership function for the output variable out is as given
in Section 3. The number of rules in the first FKB is
24 = 16. The second FKB has 3 inputs; they are:

(i) Minimum gradient (as calculated in the previous
section) fuzzified using 2 given fuzzy sets.
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(ii) Median of the pixels in the 3× 3 sliding window
fuzzified using 11 triangular fuzzy sets shown in
Figure 4.

(iii) Mean in the direction of the minimum gradient
(as calculated in WFBF) fuzzified using the 11
triangular fuzzy sets.

Figure 3: Multi-Layered Fuzzy Image Filter

Figure 4: Fuzzy sets for fuzzification of median and
mean values

Each fuzzy set in Figure 4 can be described by the
following equation where x is the value of the variable
to be fuzzified, L is the ‘left corner’ of a fuzzy set, C
is the ‘center’ of a fuzzy set and R is the ‘right corner’
of a fuzzy set.

µ(x) =




(x − L)/(C − L) L < x ≤ C
(R − x)/(R − C) C < x < R

0 else

The output of the second layer is taken as the ‘re-
constructed’ integer value of the pixel (Irecons ∈
{0, · · · , 255} ). The number of rules in the second FKB
is 21 × 112 = 242. The final output of the enhanced
pixel is calculated according to Equation 3.

Evolutionary Learning of the Fuzzy Rule Bases
We show now how to apply an EA [11, 12], to learn
the fuzzy rules in the two knowledge bases. Each in-
dividual string in the evolutionary population is to
uniquely represent the multi-layered structure. This
is achieved as follows. In the first knowledge base each

fuzzy rule is uniquely defined by the consequent part,
it being represented by either a 0 or 1 depending on
whether the output variable out belongs to the fuzzy
set VL or VH respectively. In similar manner each
fuzzy rule in the second knowledge base is defined by
its consequent.

The two fuzzy rule bases can therefore be represented
as a string of M = 258 consequents,

∼
x

k
= {a1, · · · , a16, a17, · · · , a258},

where aj ∈ {0, 1} for j = 1, · · · , 16, are the conse-
quents for the rules in the first knowledge base and
aj ∈ {0, 255} for j = 17, · · · ,M , are the consequents
for the rules in the second knowledge base. In this
representation the output centres for sets VL and VH
in the first layer are represented by 0 and 1, and in
the second layer we take as output centres, the full set
of integers in the range from 0 to 255.

Each such string forms an individual in the evolution-
ary population and a possible solution to finding the
“best” fuzzy filter. The population at generation t,
P (t) = {

∼
x

k
: k = 1, · · · , N}, where N = 100 is the

number of individuals in the population, the popu-
lation size. We define the fitness for each individual
fk, as the MSE between the uncorrupted image and
the enhanced version of the 256 × 256 ‘Lena’ image
corrupted by 30%. The initial generation was formed
by placing random elements in each individual string.
Subsequent generations were built using a full replace-
ment policy including an elitism strategy of size 2 and
tournament size nT = 3.

Mutation probability was set to pM = 0.03. Normal
binary mutation was used for the first 16 elements
of a string and the mutation method shown in the
following code segment was used for the remaining
242 elements. Here pv is the present value of a string
component and mv is the mutated value.

if (flip(p_{M}) == true)

{ if (pv == 0)

{mv = pv + rand2limit(1,128);}

else f (pv == 255)

{mv = pv - rand2limit(1,128);}

else

{

if (flip(0.5) == true)

{mv = pv + rand2limit(1,128);}

else

{mv = pv - rand2limit(1,128);}

}

} else

{mv = pv;}

if (mv < 0 ) { mv = 0 ; }

if (mv > 255) { mv = 255; }

Remark: This algorithm says that if the present
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value of an element is 0 then a number between 1
and 128 should be added to the present value. If the
present value of an element is 255 then a number be-
tween 1 and 128 is subtracted from the present value.
Else a value between 0 and 128 is either added or sub-
tracted with a probability of 0.5. If the calculated
value lies outside [0, 255] then the value is clipped to
the boundary limits.

The crossover strategy consisted of a blend of simple
one-point crossover and a modified version of arith-
metic crossover with a probability of pC = 0.6. Arith-
metic crossover with different parameter (α) values
was used as shown by the following code:

double alpha1 = rand0_1();

double alpha2 = rand0_1();

for (i = 0; i < length_of_chromosome; i++) {

c1[i] = round(alpha1 * p2[i]

+ (1 - alpha1) * p1[i]);

c2[i] = round(alpha2 * p2[i]

+ (1 - alpha2) * p2[i]); }

The EA was set to terminate either after a pre-set number
of generations or when the difference between minimum
fitness value and the maximum fitness value was smaller
than a pre-determined value. It was found that for this

Figure 5: Graph showing the MSE vs Noise Percent-
age

multi-layered structure the EA converged around the 280th

generation to a fuzzy rule base which gave a minimum
MSE value of 67.16. The algorithm was re-run with dif-
ferent random initializing seeds achieving minimum MSE
around the same value.

Experimental Results
This filter was implemented on a ‘Lena’ test image having
30% corruption and size 256 × 256 pixels to reduce the
computational time required and then tested on a 512×512
‘Lena’ image. The results for the 512 × 512 image are
shown in Figures 6 and 7 for corruption levels of 30% and
40% and the MSE values obtained for corruption levels
ranging from 10% to 60% are shown in Figure 5.

It is observed that this new MLFL system has sufficient
knowledge learnt from enhancing a 256 × 256 image cor-
rupted by 30% impulse noise, to remove noise as high as
40% from the 512 × 512 image.

5. CONCLUSION

In this paper we have presented a multi-layered fuzzy im-
age filter based on the weighted fuzzy blend filter. The
rules in the layers have been learnt directly from data us-
ing an appropriately defined evolutionary algorithm with
modifications to the basic mutation and crossover opera-
tors. It has been shown that this new fuzzy image filter
performs better than conventional mean and median fil-
ters. Indeed the MLFL system having been learnt by en-
hancing a reduced 256 × 256 ‘Lena’ image corrupted by
30% impulse noise, is able to remove noise as high as 40%
in a 512 × 512 ‘Lena’ image.

The filter is seen to preserve intricate features of the image
while removing heavy impulse noise where as the conven-
tional mean and median filters fail in this context even at
low corruption levels. That is the granularity is well main-
tained in the enhanced images obtained through the fuzzy
processing which is not reflected through the plots of MSE
values for median filter and the MLFL structure as shown
in Figure 5.

The learning of fuzzy rules in a fuzzy image filter with a
true hierarchical fuzzy logic structure where the output of
the first layer is fed in to the second layer to obtain an
‘improved’ final output [13], is being currently studied.
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